Ion, Ion Gabriel ; Wildner, Christian ; Loukrezis, Dimitrios ; Koeppl, Heinz ; De Gersem, Herbert (2024)
Tensor-train approximation of the chemical master equation and its application for parameter inference.
In: The Journal of Chemical Physics, 2021, 155 (3)
doi: 10.26083/tuprints-00026628
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In this work, we perform Bayesian inference tasks for the chemical master equation in the tensor-train format. The tensor-train approximation has been proven to be very efficient in representing high-dimensional data arising from the explicit representation of the chemical master equation solution. An additional advantage of representing the probability mass function in the tensor-train format is that parametric dependency can be easily incorporated by introducing a tensor product basis expansion in the parameter space. Time is treated as an additional dimension of the tensor and a linear system is derived to solve the chemical master equation in time. We exemplify the tensor-train method by performing inference tasks such as smoothing and parameter inference using the tensor-train framework. A very high compression ratio is observed for storing the probability mass function of the solution. Since all linear algebra operations are performed in the tensor-train format, a significant reduction in the computational time is observed as well.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Ion, Ion Gabriel ; Wildner, Christian ; Loukrezis, Dimitrios ; Koeppl, Heinz ; De Gersem, Herbert |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Tensor-train approximation of the chemical master equation and its application for parameter inference |
Sprache: | Englisch |
Publikationsjahr: | 30 April 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Ort der Erstveröffentlichung: | Melville, NY |
Verlag: | AIP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | The Journal of Chemical Physics |
Jahrgang/Volume einer Zeitschrift: | 155 |
(Heft-)Nummer: | 3 |
Kollation: | 17 Seiten |
DOI: | 10.26083/tuprints-00026628 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/26628 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | In this work, we perform Bayesian inference tasks for the chemical master equation in the tensor-train format. The tensor-train approximation has been proven to be very efficient in representing high-dimensional data arising from the explicit representation of the chemical master equation solution. An additional advantage of representing the probability mass function in the tensor-train format is that parametric dependency can be easily incorporated by introducing a tensor product basis expansion in the parameter space. Time is treated as an additional dimension of the tensor and a linear system is derived to solve the chemical master equation in time. We exemplify the tensor-train method by performing inference tasks such as smoothing and parameter inference using the tensor-train framework. A very high compression ratio is observed for storing the probability mass function of the solution. Since all linear algebra operations are performed in the tensor-train format, a significant reduction in the computational time is observed as well. |
Freie Schlagworte: | Bayesian inference, Numerical linear algebra, Algebraic operation, Probability theory, Chemical reaction dynamics, Tensor network theory, Stochastic processes |
ID-Nummer: | Artikel-ID: 034102 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-266282 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Computational Electromagnetics 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Theorie Elektromagnetischer Felder 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder Interdisziplinäre Forschungsprojekte Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology |
Hinterlegungsdatum: | 30 Apr 2024 09:06 |
Letzte Änderung: | 13 Mai 2024 11:23 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Tensor-train approximation of the chemical master equation and its application for parameter inference. (deposited 30 Apr 2024 09:06) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |