TU Darmstadt / ULB / TUbiblio

Exploring the potential of nitride and carbonitride MAX phases: synthesis, magnetic and electrical transport properties of V2GeC, V2GeC0.5N0.5, and V2GeN

Kubitza, Niels ; Beckmann, Benedikt ; Jankovic, Sanja ; Skokov, Konstantin P. ; Riaz, Aysha A. ; Schlueter, Christoph ; Regoutz, Anna ; Gutfleisch, Oliver ; Birkel, Christina S. (2024)
Exploring the potential of nitride and carbonitride MAX phases: synthesis, magnetic and electrical transport properties of V2GeC, V2GeC0.5N0.5, and V2GeN.
In: Chemistry of Materials, 36 (3)
doi: 10.1021/acs.chemmater.3c02510
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The chemical composition variety of MAX phases is rapidly evolving in many different directions, especially with the synthesis of carbides that contain two or more metals on the M-site of these layered solids. However, nitride and carbonitride MAX phases are still underrepresented, and only a few members have been reported that are for the most part barely characterized, particularly in terms of magnetic and electronic properties. Here, we demonstrate a simple and effective synthesis route, as well as a comprehensive characterization of three MAX phases, (i) V2GeC, (ii) the hitherto unknown carbonitride V2GeC0.5N0.5, and (iii) the almost unexplored nitride V2GeN. By combining a microwave-assisted precursor synthesis with conventional heat treatment and densification by spark plasma sintering, almost phase-pure (carbo)nitride products are obtained. Magnetic measurements reveal an antiferromagnetic-paramagnetic-like phase transition for all samples in the temperature range of 160–200 K. In addition, increasing the amount of nitrogen on the X-site of the MAX phase structure leads to a constant increase in the magnetic susceptibilities while the electrical resistivity is constantly decreasing. Overall, these findings provide crucial insights into how to tune the electronic and magnetic properties of MAX phases by only varying the chemical composition of the X-site. This further substantiates the demand for (carbo)nitride research with the potential to be extended to the remaining elemental sites within the MAX phase structure to push toward controlled material design and to achieve desired functional properties, such as ferromagnetism.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kubitza, Niels ; Beckmann, Benedikt ; Jankovic, Sanja ; Skokov, Konstantin P. ; Riaz, Aysha A. ; Schlueter, Christoph ; Regoutz, Anna ; Gutfleisch, Oliver ; Birkel, Christina S.
Art des Eintrags: Bibliographie
Titel: Exploring the potential of nitride and carbonitride MAX phases: synthesis, magnetic and electrical transport properties of V2GeC, V2GeC0.5N0.5, and V2GeN
Sprache: Englisch
Publikationsjahr: 19 Januar 2024
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemistry of Materials
Jahrgang/Volume einer Zeitschrift: 36
(Heft-)Nummer: 3
DOI: 10.1021/acs.chemmater.3c02510
Kurzbeschreibung (Abstract):

The chemical composition variety of MAX phases is rapidly evolving in many different directions, especially with the synthesis of carbides that contain two or more metals on the M-site of these layered solids. However, nitride and carbonitride MAX phases are still underrepresented, and only a few members have been reported that are for the most part barely characterized, particularly in terms of magnetic and electronic properties. Here, we demonstrate a simple and effective synthesis route, as well as a comprehensive characterization of three MAX phases, (i) V2GeC, (ii) the hitherto unknown carbonitride V2GeC0.5N0.5, and (iii) the almost unexplored nitride V2GeN. By combining a microwave-assisted precursor synthesis with conventional heat treatment and densification by spark plasma sintering, almost phase-pure (carbo)nitride products are obtained. Magnetic measurements reveal an antiferromagnetic-paramagnetic-like phase transition for all samples in the temperature range of 160–200 K. In addition, increasing the amount of nitrogen on the X-site of the MAX phase structure leads to a constant increase in the magnetic susceptibilities while the electrical resistivity is constantly decreasing. Overall, these findings provide crucial insights into how to tune the electronic and magnetic properties of MAX phases by only varying the chemical composition of the X-site. This further substantiates the demand for (carbo)nitride research with the potential to be extended to the remaining elemental sites within the MAX phase structure to push toward controlled material design and to achieve desired functional properties, such as ferromagnetism.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
Hinterlegungsdatum: 02 Mai 2024 06:41
Letzte Änderung: 02 Mai 2024 11:57
PPN: 51769705X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen