TU Darmstadt / ULB / TUbiblio

Structural dynamics of first-order phase transition in giant magnetocaloric La(Fe,Si)13: the free energy landscape

Beleza, André Azevedo ; Pires, Bernardo ; Almeida, Rafael ; Evans, John S. O. ; Santos, António M. dos ; Frontzek, Mathias ; Lovell, Edmund ; Beckmann, Benedikt ; Skokov, Konstantin P. ; Gutfleisch, Oliver ; Araujo, João Pedro ; Milinda Abeykoon, A.M. ; Amaral, João S. ; Belo, João Horta (2024)
Structural dynamics of first-order phase transition in giant magnetocaloric La(Fe,Si)13: the free energy landscape.
In: Materials Today Physics, 42
doi: 10.1016/j.mtphys.2024.101388
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Maximizing the performance of magnetic refrigerators and thermomagnetic energy harvesters is imperative for their successful implementation and can be done by maximizing their operation frequency. One of the features delimiting the frequency and efficiency of such devices is the phase transition kinetics of their magnetocaloric/thermomagnetic active material. While previous studies have described the magnetic component governing the kinetics of the magnetovolume phase transition in La(Fe,Si)13 giant magnetocaloric materials, a comprehensive description of its structural component has yet to be explored. In this study, in situ synchrotron X-ray diffraction is employed to describe the structural changes upon magnetic field application/removal. Long magnetic field dependent relaxation times up to a few hundred seconds are observed after the driving field is paused. The phase transition is found to be highly asymmetric upon magnetic field cycling due to the different Gibbs energy landscapes and the absence of an energy barrier upon field removal. An exponential relationship is found between the energy barriers and the relaxation times, suggesting the process is governed by a non-thermal activation over an energy barrier process. Such fundamental knowledge on first-order phase transition kinetics suggests pathways for materials optimization and smarter design of magnetic field cycling in real-life devices.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Beleza, André Azevedo ; Pires, Bernardo ; Almeida, Rafael ; Evans, John S. O. ; Santos, António M. dos ; Frontzek, Mathias ; Lovell, Edmund ; Beckmann, Benedikt ; Skokov, Konstantin P. ; Gutfleisch, Oliver ; Araujo, João Pedro ; Milinda Abeykoon, A.M. ; Amaral, João S. ; Belo, João Horta
Art des Eintrags: Bibliographie
Titel: Structural dynamics of first-order phase transition in giant magnetocaloric La(Fe,Si)13: the free energy landscape
Sprache: Englisch
Publikationsjahr: März 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials Today Physics
Jahrgang/Volume einer Zeitschrift: 42
DOI: 10.1016/j.mtphys.2024.101388
Kurzbeschreibung (Abstract):

Maximizing the performance of magnetic refrigerators and thermomagnetic energy harvesters is imperative for their successful implementation and can be done by maximizing their operation frequency. One of the features delimiting the frequency and efficiency of such devices is the phase transition kinetics of their magnetocaloric/thermomagnetic active material. While previous studies have described the magnetic component governing the kinetics of the magnetovolume phase transition in La(Fe,Si)13 giant magnetocaloric materials, a comprehensive description of its structural component has yet to be explored. In this study, in situ synchrotron X-ray diffraction is employed to describe the structural changes upon magnetic field application/removal. Long magnetic field dependent relaxation times up to a few hundred seconds are observed after the driving field is paused. The phase transition is found to be highly asymmetric upon magnetic field cycling due to the different Gibbs energy landscapes and the absence of an energy barrier upon field removal. An exponential relationship is found between the energy barriers and the relaxation times, suggesting the process is governed by a non-thermal activation over an energy barrier process. Such fundamental knowledge on first-order phase transition kinetics suggests pathways for materials optimization and smarter design of magnetic field cycling in real-life devices.

Zusätzliche Informationen:

Artikel-ID: 101388

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 30 Apr 2024 05:30
Letzte Änderung: 30 Apr 2024 06:33
PPN: 517664690
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen