TU Darmstadt / ULB / TUbiblio

Scaling the Functional Nanopore (FuN) Screen: systematic evaluation of self-assembling membrane peptides and extension with a K+-responsive fluorescent protein sensor

Eisenhauer, Klara ; Weber, Wadim ; Kemp, Philipp ; Gebhardt, Carolin ; Kaufmann, Marwan ; Tewes, Noel ; Zhdanova, Hanna ; Tietze, Alesia ; Rauh, Oliver ; Stein, Viktor (2024)
Scaling the Functional Nanopore (FuN) Screen: systematic evaluation of self-assembling membrane peptides and extension with a K+-responsive fluorescent protein sensor.
In: ACS synthetic biology, 13 (4)
doi: 10.1021/acssynbio.3c00671
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca in- and efflux patterns across the inner membrane of . With a primary proof-of-concept established for the S68 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Eisenhauer, Klara ; Weber, Wadim ; Kemp, Philipp ; Gebhardt, Carolin ; Kaufmann, Marwan ; Tewes, Noel ; Zhdanova, Hanna ; Tietze, Alesia ; Rauh, Oliver ; Stein, Viktor
Art des Eintrags: Bibliographie
Titel: Scaling the Functional Nanopore (FuN) Screen: systematic evaluation of self-assembling membrane peptides and extension with a K+-responsive fluorescent protein sensor
Sprache: Englisch
Publikationsjahr: 19 April 2024
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS synthetic biology
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 4
DOI: 10.1021/acssynbio.3c00671
Kurzbeschreibung (Abstract):

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca in- and efflux patterns across the inner membrane of . With a primary proof-of-concept established for the S68 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.

ID-Nummer: pmid:38598783
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Protein Engineering of Ion Conducting Nanopores
Hinterlegungsdatum: 25 Apr 2024 08:07
Letzte Änderung: 25 Apr 2024 09:24
PPN: 517483599
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen