TU Darmstadt / ULB / TUbiblio

Face Presentation Attack Detection by Excavating Causal Clues and Adapting Embedding Statistics

Fang, Meiling ; Damer, Naser (2024)
Face Presentation Attack Detection by Excavating Causal Clues and Adapting Embedding Statistics.
Winter Conference on Applications of Computer Vision 2024. Waikoloa, USA (04.01.-08.01.2024)
doi: 10.1109/WACV57701.2024.00615
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Recent face presentation attack detection (PAD) leverages domain adaptation (DA) and domain generalization (DG) techniques to address performance degradation on unknown domains. However, DA-based PAD methods require access to unlabeled target data, while most DG-based PAD solutions rely on a priori, i.e., known domain labels. Moreover, most DA-/DG-based methods are computationally intensive, demanding complex model architectures and/or multi-stage training processes. This paper proposes to model face PAD as a compound DG task from a causal perspective, linking it to model optimization. We excavate the causal factors hidden in the high-level representation via counterfactual intervention. Moreover, we introduce a class-guided MixStyle to enrich feature-level data distribution within classes instead of focusing on domain information. Both class-guided MixStyle and counterfactual intervention components introduce no extra trainable parameters and negligible computational resources. Extensive cross-dataset and analytic experiments demonstrate the effectiveness and efficiency of our method compared to state-of-the-art PADs. The implementation and the trained weights are publicly available.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Fang, Meiling ; Damer, Naser
Art des Eintrags: Bibliographie
Titel: Face Presentation Attack Detection by Excavating Causal Clues and Adapting Embedding Statistics
Sprache: Englisch
Publikationsjahr: 9 April 2024
Verlag: IEEE
Buchtitel: Proceedings: 2024 IEEE/CVF Winter Conference on Applications of Computer Vision
Veranstaltungstitel: Winter Conference on Applications of Computer Vision 2024
Veranstaltungsort: Waikoloa, USA
Veranstaltungsdatum: 04.01.-08.01.2024
DOI: 10.1109/WACV57701.2024.00615
Kurzbeschreibung (Abstract):

Recent face presentation attack detection (PAD) leverages domain adaptation (DA) and domain generalization (DG) techniques to address performance degradation on unknown domains. However, DA-based PAD methods require access to unlabeled target data, while most DG-based PAD solutions rely on a priori, i.e., known domain labels. Moreover, most DA-/DG-based methods are computationally intensive, demanding complex model architectures and/or multi-stage training processes. This paper proposes to model face PAD as a compound DG task from a causal perspective, linking it to model optimization. We excavate the causal factors hidden in the high-level representation via counterfactual intervention. Moreover, we introduce a class-guided MixStyle to enrich feature-level data distribution within classes instead of focusing on domain information. Both class-guided MixStyle and counterfactual intervention components introduce no extra trainable parameters and negligible computational resources. Extensive cross-dataset and analytic experiments demonstrate the effectiveness and efficiency of our method compared to state-of-the-art PADs. The implementation and the trained weights are publicly available.

Freie Schlagworte: Biometrics, Face recognition, Spoofing attacks, Machine learning, Deep learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 26 Apr 2024 19:20
Letzte Änderung: 26 Apr 2024 19:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen