TU Darmstadt / ULB / TUbiblio

Compactness and convergence rates in the combinatorial integral approximation decomposition

Kirches, Christian ; Manns, Paul ; Ulbrich, Stefan (2024)
Compactness and convergence rates in the combinatorial integral approximation decomposition.
In: Mathematical Programming: Series A, Series B, 2021, 188 (2)
doi: 10.26083/tuprints-00023879
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The combinatorial integral approximation decomposition splits the optimization of a discrete-valued control into two steps: solving a continuous relaxation of the discrete control problem, and computing a discrete-valued approximation of the relaxed control. Different algorithms exist for the second step to construct piecewise constant discrete-valued approximants that are defined on given decompositions of the domain. It is known that the resulting discrete controls can be constructed such that they converge to a relaxed control in the weak* topology of L∞ if the grid constant of this decomposition is driven to zero. We exploit this insight to formulate a general approximation result for optimization problems, which feature discrete and distributed optimization variables, and which are governed by a compact control-to-state operator. We analyze the topology induced by the grid refinements and prove convergence rates of the control vectors for two problem classes. We use a reconstruction problem from signal processing to demonstrate both the applicability of the method outside the scope of differential equations, the predominant case in the literature, and the effectiveness of the approach.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kirches, Christian ; Manns, Paul ; Ulbrich, Stefan
Art des Eintrags: Zweitveröffentlichung
Titel: Compactness and convergence rates in the combinatorial integral approximation decomposition
Sprache: Englisch
Publikationsjahr: 23 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: August 2021
Ort der Erstveröffentlichung: Berlin ; Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematical Programming: Series A, Series B
Jahrgang/Volume einer Zeitschrift: 188
(Heft-)Nummer: 2
DOI: 10.26083/tuprints-00023879
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23879
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The combinatorial integral approximation decomposition splits the optimization of a discrete-valued control into two steps: solving a continuous relaxation of the discrete control problem, and computing a discrete-valued approximation of the relaxed control. Different algorithms exist for the second step to construct piecewise constant discrete-valued approximants that are defined on given decompositions of the domain. It is known that the resulting discrete controls can be constructed such that they converge to a relaxed control in the weak* topology of L∞ if the grid constant of this decomposition is driven to zero. We exploit this insight to formulate a general approximation result for optimization problems, which feature discrete and distributed optimization variables, and which are governed by a compact control-to-state operator. We analyze the topology induced by the grid refinements and prove convergence rates of the control vectors for two problem classes. We use a reconstruction problem from signal processing to demonstrate both the applicability of the method outside the scope of differential equations, the predominant case in the literature, and the effectiveness of the approach.

Freie Schlagworte: Mixed-integer optimal control, Approximation methods, Convergence rates, Combinatorial integral decomposition
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-238795
Zusätzliche Informationen:

Special Issue: Mixed-Integer Nonlinear Programming in Oberwolfach

Mathematics Subject Classification: 41A25 · 49M20 · 49M25 · 65D15 · 90C11

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
Hinterlegungsdatum: 23 Apr 2024 12:48
Letzte Änderung: 25 Apr 2024 10:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen