TU Darmstadt / ULB / TUbiblio

Inferring causal molecular networks: empirical assessment through a community-based effort

Hill, Steven M. ; Heiser, Laura M. ; Cokelaer, Thomas ; Unger, Michael ; Nesser, Nicole K. ; Carlin, Daniel E. ; Zhang, Yang ; Sokolov, Artem ; Paull, Evan O. ; Wong, Chris K. ; Graim, Kiley ; Bivol, Adrian ; Wang, Haizhou ; Zhu, Fan ; Afsari, Bahman ; Danilova, Ludmila V. ; Favorov, Alexander V. ; Lee, Wai Shing ; Taylor, Dane ; Hu, Chenyue W. ; Long, Byron L. ; Noren, David P. ; Bisberg, Alexander J. ; Mills, Gordon B. ; Gray, Joe W. ; Kellen, Michael ; Norman, Thea ; Friend, Stephen ; Qutub, Amina A. ; Fertig, Elana J. ; Guan, Yuanfang ; Song, Mingzhou ; Stuart, Joshua M. ; Spellman, Paul T. ; Koeppl, Heinz ; Stolovitzky, Gustavo ; Saez-Rodriguez, Julio ; Mukherjee, Sach (2024)
Inferring causal molecular networks: empirical assessment through a community-based effort.
In: Nature Methods, 2016, 13 (4)
doi: 10.26083/tuprints-00027016
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Hill, Steven M. ; Heiser, Laura M. ; Cokelaer, Thomas ; Unger, Michael ; Nesser, Nicole K. ; Carlin, Daniel E. ; Zhang, Yang ; Sokolov, Artem ; Paull, Evan O. ; Wong, Chris K. ; Graim, Kiley ; Bivol, Adrian ; Wang, Haizhou ; Zhu, Fan ; Afsari, Bahman ; Danilova, Ludmila V. ; Favorov, Alexander V. ; Lee, Wai Shing ; Taylor, Dane ; Hu, Chenyue W. ; Long, Byron L. ; Noren, David P. ; Bisberg, Alexander J. ; Mills, Gordon B. ; Gray, Joe W. ; Kellen, Michael ; Norman, Thea ; Friend, Stephen ; Qutub, Amina A. ; Fertig, Elana J. ; Guan, Yuanfang ; Song, Mingzhou ; Stuart, Joshua M. ; Spellman, Paul T. ; Koeppl, Heinz ; Stolovitzky, Gustavo ; Saez-Rodriguez, Julio ; Mukherjee, Sach
Art des Eintrags: Zweitveröffentlichung
Titel: Inferring causal molecular networks: empirical assessment through a community-based effort
Sprache: Englisch
Publikationsjahr: 22 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Februar 2016
Ort der Erstveröffentlichung: London
Verlag: Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Methods
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 4
DOI: 10.26083/tuprints-00027016
URL / URN: http://tuprints.ulb.tu-darmstadt.de/27016
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-270162
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 22 Apr 2024 09:53
Letzte Änderung: 09 Aug 2024 06:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen