TU Darmstadt / ULB / TUbiblio

Holonomic quantum computing in symmetry-protected ground states of spin chains

Renes, Joseph M. ; Miyake, Akimasa ; Brennen, Gavin K. ; Bartlett, Stephen D. (2024)
Holonomic quantum computing in symmetry-protected ground states of spin chains.
In: New Journal of Physics, 2013, 15 (2)
doi: 10.1088/1367-2630/15/2/025020
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the symmetry-protected degenerate ground states of spin-1 chains, while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the symmetry, and so inherit some protection from noise and disorder from the symmetry-protected ground states.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Renes, Joseph M. ; Miyake, Akimasa ; Brennen, Gavin K. ; Bartlett, Stephen D.
Art des Eintrags: Zweitveröffentlichung
Titel: Holonomic quantum computing in symmetry-protected ground states of spin chains
Sprache: Englisch
Publikationsjahr: 22 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 14 Februar 2013
Ort der Erstveröffentlichung: London
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 2
Kollation: 17 Seiten
DOI: 10.1088/1367-2630/15/2/025020
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20572
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the symmetry-protected degenerate ground states of spin-1 chains, while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the symmetry, and so inherit some protection from noise and disorder from the symmetry-protected ground states.

ID-Nummer: Artikel-ID: 025020
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-205726
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 22 Apr 2024 09:06
Letzte Änderung: 23 Apr 2024 10:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen