Waldis, Andreas ; Hou, Yufang ; Gurevych, Iryna (2024)
Dive into the Chasm: Probing the Gap between In- and Cross-Topic Generalization.
18th Conference of the European Chapter of the Association for Computational Linguistics. St. Julian's, Malta (17.-22.03.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Pre-trained language models (PLMs) perform well in In-Topic setups, where training and testing data come from the same topics. However, they face challenges in Cross-Topic scenarios where testing data is derived from distinct topics. This paper analyzes various PLMs with three probing-based experiments to better understand the reasons behind such generalization gaps. For the first time, we demonstrate that the extent of these generalization gaps and the sensitivity to token-level interventions vary significantly across PLMs. By evaluating large language models (LLMs), we show the usefulness of our analysis for these recent models. Overall, we observe diverse pre-training objectives and architectural regularization contribute to more robust PLMs and mitigate generalization gaps. Our research contributes to a deeper understanding and comparison of language models across different generalization scenarios.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Waldis, Andreas ; Hou, Yufang ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | Dive into the Chasm: Probing the Gap between In- and Cross-Topic Generalization |
Sprache: | Englisch |
Publikationsjahr: | März 2024 |
Verlag: | ACL |
Buchtitel: | Findings of the Association for Computational Linguistics: EACL 2024 |
Veranstaltungstitel: | 18th Conference of the European Chapter of the Association for Computational Linguistics |
Veranstaltungsort: | St. Julian's, Malta |
Veranstaltungsdatum: | 17.-22.03.2024 |
URL / URN: | https://aclanthology.org/2024.findings-eacl.146/ |
Kurzbeschreibung (Abstract): | Pre-trained language models (PLMs) perform well in In-Topic setups, where training and testing data come from the same topics. However, they face challenges in Cross-Topic scenarios where testing data is derived from distinct topics. This paper analyzes various PLMs with three probing-based experiments to better understand the reasons behind such generalization gaps. For the first time, we demonstrate that the extent of these generalization gaps and the sensitivity to token-level interventions vary significantly across PLMs. By evaluating large language models (LLMs), we show the usefulness of our analysis for these recent models. Overall, we observe diverse pre-training objectives and architectural regularization contribute to more robust PLMs and mitigate generalization gaps. Our research contributes to a deeper understanding and comparison of language models across different generalization scenarios. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 23 Apr 2024 10:04 |
Letzte Änderung: | 12 Aug 2024 12:49 |
PPN: | 520594630 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |