TU Darmstadt / ULB / TUbiblio

Dive into the Chasm: Probing the Gap between In- and Cross-Topic Generalization

Waldis, Andreas ; Hou, Yufang ; Gurevych, Iryna (2024)
Dive into the Chasm: Probing the Gap between In- and Cross-Topic Generalization.
18th Conference of the European Chapter of the Association for Computational Linguistics. St. Julian's, Malta (17.-22.03.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Pre-trained language models (PLMs) perform well in In-Topic setups, where training and testing data come from the same topics. However, they face challenges in Cross-Topic scenarios where testing data is derived from distinct topics. This paper analyzes various PLMs with three probing-based experiments to better understand the reasons behind such generalization gaps. For the first time, we demonstrate that the extent of these generalization gaps and the sensitivity to token-level interventions vary significantly across PLMs. By evaluating large language models (LLMs), we show the usefulness of our analysis for these recent models. Overall, we observe diverse pre-training objectives and architectural regularization contribute to more robust PLMs and mitigate generalization gaps. Our research contributes to a deeper understanding and comparison of language models across different generalization scenarios.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Waldis, Andreas ; Hou, Yufang ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Dive into the Chasm: Probing the Gap between In- and Cross-Topic Generalization
Sprache: Englisch
Publikationsjahr: März 2024
Verlag: ACL
Buchtitel: Findings of the Association for Computational Linguistics: EACL 2024
Veranstaltungstitel: 18th Conference of the European Chapter of the Association for Computational Linguistics
Veranstaltungsort: St. Julian's, Malta
Veranstaltungsdatum: 17.-22.03.2024
URL / URN: https://aclanthology.org/2024.findings-eacl.146/
Kurzbeschreibung (Abstract):

Pre-trained language models (PLMs) perform well in In-Topic setups, where training and testing data come from the same topics. However, they face challenges in Cross-Topic scenarios where testing data is derived from distinct topics. This paper analyzes various PLMs with three probing-based experiments to better understand the reasons behind such generalization gaps. For the first time, we demonstrate that the extent of these generalization gaps and the sensitivity to token-level interventions vary significantly across PLMs. By evaluating large language models (LLMs), we show the usefulness of our analysis for these recent models. Overall, we observe diverse pre-training objectives and architectural regularization contribute to more robust PLMs and mitigate generalization gaps. Our research contributes to a deeper understanding and comparison of language models across different generalization scenarios.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 23 Apr 2024 10:04
Letzte Änderung: 12 Aug 2024 12:49
PPN: 520594630
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen