TU Darmstadt / ULB / TUbiblio

Control of ink-water balance in offset lithography by machine learning

Holle, Eric ; Knödl, Felix ; Mayer, Martin ; Schneider, Tizian ; Spiehl, Dieter ; Blaeser, Andreas ; Dörsam, Edgar ; Schütze, Andreas (2023)
Control of ink-water balance in offset lithography by machine learning.
49th International Research Conference of Iarigai. Wuppertal (18.09. - 20.09.2023)
doi: 10.14622/Advances_49_2023_16
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents a concept for recording relevant press parameters and parameters influencing the ink-water balance. The sensor technology for recording additional process parameters is explained and the installation of a measuring traverse in a sheetfed offset press is shown. A measurement campaign with variation of various printing parameters was carried out. The set press parameters and the sensor data were digitally documented and then evaluated using sensor data fusion and a machine learning toolbox developed at Saarland University. The sensor data consists of temperature, humidity and gas sensor data, which were synchronized with the recorded press parameters. The target variable to be investigated is the setting of the dampening potentiometer. It was shown that the algorithm is able to relatively accurately reconstruct the setting of the dampening potentiometer.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Holle, Eric ; Knödl, Felix ; Mayer, Martin ; Schneider, Tizian ; Spiehl, Dieter ; Blaeser, Andreas ; Dörsam, Edgar ; Schütze, Andreas
Art des Eintrags: Bibliographie
Titel: Control of ink-water balance in offset lithography by machine learning
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Verlag: Iarigai
Buchtitel: Advances in Printing and Media Technology Vol. 49
Veranstaltungstitel: 49th International Research Conference of Iarigai
Veranstaltungsort: Wuppertal
Veranstaltungsdatum: 18.09. - 20.09.2023
DOI: 10.14622/Advances_49_2023_16
Kurzbeschreibung (Abstract):

This paper presents a concept for recording relevant press parameters and parameters influencing the ink-water balance. The sensor technology for recording additional process parameters is explained and the installation of a measuring traverse in a sheetfed offset press is shown. A measurement campaign with variation of various printing parameters was carried out. The set press parameters and the sensor data were digitally documented and then evaluated using sensor data fusion and a machine learning toolbox developed at Saarland University. The sensor data consists of temperature, humidity and gas sensor data, which were synchronized with the recorded press parameters. The target variable to be investigated is the setting of the dampening potentiometer. It was shown that the algorithm is able to relatively accurately reconstruct the setting of the dampening potentiometer.

Freie Schlagworte: gas sensor, printing, AI, model, sensor fusion
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD)
Hinterlegungsdatum: 24 Apr 2024 12:43
Letzte Änderung: 25 Apr 2024 08:34
PPN: 517440059
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen