TU Darmstadt / ULB / TUbiblio

Machine Learning Based Identification and Prioritization of Electrical Consumers for Energy Monitoring

Stobert, Arthur ; Ioshchikhes, Borys ; Weigold, Matthias (2023)
Machine Learning Based Identification and Prioritization of Electrical Consumers for Energy Monitoring.
In: MM Science Journal, 2023 (4)
doi: 10.17973/MMSJ.2023_11_2023123
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents a machine learning based tool for the automated analysis of circuit diagrams, identifying electrical consumers through computer vision. Detected technical information is extracted and summarized in a report. In a web-based interactive dashboard the identified consumers are prioritized for further actions. Based on their nominal power an ABC-analysis classifies the consumers into three groups. Within an energy portfolio they are divided into four distinctive categories. In both approaches the consumers' classification leads to specific strategies for energy consumption measurements in the subsequent detailed analysis.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Stobert, Arthur ; Ioshchikhes, Borys ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Machine Learning Based Identification and Prioritization of Electrical Consumers for Energy Monitoring
Sprache: Englisch
Publikationsjahr: November 2023
Ort: Prague, Czech Republic
Titel der Zeitschrift, Zeitung oder Schriftenreihe: MM Science Journal
Jahrgang/Volume einer Zeitschrift: 2023
(Heft-)Nummer: 4
Reihe: Special Issue | HSM 2023
Veranstaltungstitel: 17th International Conference on High Speed Machining
Veranstaltungsort: Nanjing, China
Veranstaltungsdatum: 25.10. - 28.10.2023
DOI: 10.17973/MMSJ.2023_11_2023123
URL / URN: https://www.mmscience.eu/journal/issues/november-2023/articl...
Kurzbeschreibung (Abstract):

This paper presents a machine learning based tool for the automated analysis of circuit diagrams, identifying electrical consumers through computer vision. Detected technical information is extracted and summarized in a report. In a web-based interactive dashboard the identified consumers are prioritized for further actions. Based on their nominal power an ABC-analysis classifies the consumers into three groups. Within an energy portfolio they are divided into four distinctive categories. In both approaches the consumers' classification leads to specific strategies for energy consumption measurements in the subsequent detailed analysis.

Freie Schlagworte: Computer Vision, Decision Support, Energy Transparency
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > ETA Energietechnologien und Anwendungen in der Produktion
Hinterlegungsdatum: 18 Apr 2024 08:39
Letzte Änderung: 16 Jul 2024 08:53
PPN: 517258099
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen