TU Darmstadt / ULB / TUbiblio

Advancing oxygen separation: insights from experimental and computational analysis of La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) oxygen transport membranes

Chen, Guoxing ; Liu, Wenmei ; Widenmeyer, Marc ; Yu, Xiao ; Zhao, Zhijun ; Yoon, Songhak ; Yan, Ruijuan ; Xie, Wenjie ; Feldhoff, Armin ; Homm, Gert ; Ionescu, Emanuel ; Fyta, Maria ; Weidenkaff, Anke (2024)
Advancing oxygen separation: insights from experimental and computational analysis of La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) oxygen transport membranes.
In: Frontiers of Chemical Science and Engineering, 18 (6)
doi: 10.1007/s11705-024-2421-5
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, perovskite-type La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min⁻¹cm⁻² under air/He and air/CO₂ gradients at 1173 K, respectively. After 1600 h of CO₂ exposure, the perovskite structure remained intact, showcasing superior CO₂ resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO₂-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Chen, Guoxing ; Liu, Wenmei ; Widenmeyer, Marc ; Yu, Xiao ; Zhao, Zhijun ; Yoon, Songhak ; Yan, Ruijuan ; Xie, Wenjie ; Feldhoff, Armin ; Homm, Gert ; Ionescu, Emanuel ; Fyta, Maria ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: Advancing oxygen separation: insights from experimental and computational analysis of La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) oxygen transport membranes
Sprache: Englisch
Publikationsjahr: 15 April 2024
Ort: Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers of Chemical Science and Engineering
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 6
Kollation: 13 Seiten
DOI: 10.1007/s11705-024-2421-5
Kurzbeschreibung (Abstract):

In this study, perovskite-type La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min⁻¹cm⁻² under air/He and air/CO₂ gradients at 1173 K, respectively. After 1600 h of CO₂ exposure, the perovskite structure remained intact, showcasing superior CO₂ resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO₂-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Freie Schlagworte: perovskite, oxygen permeation, membrane, oxygen ions diffusion, oxygen vacancy, formation energy, energy barrier
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 17 Apr 2024 12:37
Letzte Änderung: 17 Apr 2024 12:37
PPN: 517206129
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen