Chen, Guoxing ; Liu, Wenmei ; Widenmeyer, Marc ; Yu, Xiao ; Zhao, Zhijun ; Yoon, Songhak ; Yan, Ruijuan ; Xie, Wenjie ; Feldhoff, Armin ; Homm, Gert ; Ionescu, Emanuel ; Fyta, Maria ; Weidenkaff, Anke (2024)
Advancing oxygen separation: insights from experimental and computational analysis of La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) oxygen transport membranes.
In: Frontiers of Chemical Science and Engineering, 18 (6)
doi: 10.1007/s11705-024-2421-5
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In this study, perovskite-type La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min⁻¹cm⁻² under air/He and air/CO₂ gradients at 1173 K, respectively. After 1600 h of CO₂ exposure, the perovskite structure remained intact, showcasing superior CO₂ resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO₂-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Chen, Guoxing ; Liu, Wenmei ; Widenmeyer, Marc ; Yu, Xiao ; Zhao, Zhijun ; Yoon, Songhak ; Yan, Ruijuan ; Xie, Wenjie ; Feldhoff, Armin ; Homm, Gert ; Ionescu, Emanuel ; Fyta, Maria ; Weidenkaff, Anke |
Art des Eintrags: | Bibliographie |
Titel: | Advancing oxygen separation: insights from experimental and computational analysis of La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) oxygen transport membranes |
Sprache: | Englisch |
Publikationsjahr: | 15 April 2024 |
Ort: | Heidelberg |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Frontiers of Chemical Science and Engineering |
Jahrgang/Volume einer Zeitschrift: | 18 |
(Heft-)Nummer: | 6 |
Kollation: | 13 Seiten |
DOI: | 10.1007/s11705-024-2421-5 |
Kurzbeschreibung (Abstract): | In this study, perovskite-type La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La₀.₇Ca₀.₃Co₀.₃Fe₀.₆M₀.₁O₃₋δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min⁻¹cm⁻² under air/He and air/CO₂ gradients at 1173 K, respectively. After 1600 h of CO₂ exposure, the perovskite structure remained intact, showcasing superior CO₂ resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO₂-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials. |
Freie Schlagworte: | perovskite, oxygen permeation, membrane, oxygen ions diffusion, oxygen vacancy, formation energy, energy barrier |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement |
Hinterlegungsdatum: | 17 Apr 2024 12:37 |
Letzte Änderung: | 17 Apr 2024 12:37 |
PPN: | 517206129 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |