TU Darmstadt / ULB / TUbiblio

The Pitfalls of Deep Eutectic Solvents in the Recycling of Lithium‐Ion Batteries

Meles Neguse, Samuel ; Yoon, Songhak ; Lim, Hyunjung ; Jang, Jueun ; Baek, Sungho ; Jöckel, Dennis M. ; Widenmeyer, Marc ; Balke‐Grünewald, Benjamin ; Weidenkaff, Anke (2024)
The Pitfalls of Deep Eutectic Solvents in the Recycling of Lithium‐Ion Batteries.
In: Energy Technology, 12 (4)
doi: 10.1002/ente.202301213
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The exponentially increasing demand for lithium-ion batteries and their limited lifetime lead to a significant increase in spent batteries. With the goal to address the sustainability and recyclability to minimize negative effects for the environment, an efficient process is vital to recover valuable materials from spent batteries by recycling. In this regard, deep eutectic solvents (DESs) have attracted huge interest, due to their unique ability to efficiently extract valuable metals from spent batteries, while also being rendered greener and more cost-effective compared to current pyrometallurgy and/or hydrometallurgy. However, the DES approach also has its own set of challenges and drawbacks, which hinder the widespread use in the industry, including its restricted recyclability, high viscosity, low thermal and chemical stability, complex chemistry, as well as limited scalability. In this perspective, it is claimed that ongoing future research on the recycling of lithium-ion batteries requires the exploration of alternative processes including modification of current hydrometallurgy processes, if the consistent improvements cannot be achieved in DES system for recycling valuable elements.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Meles Neguse, Samuel ; Yoon, Songhak ; Lim, Hyunjung ; Jang, Jueun ; Baek, Sungho ; Jöckel, Dennis M. ; Widenmeyer, Marc ; Balke‐Grünewald, Benjamin ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: The Pitfalls of Deep Eutectic Solvents in the Recycling of Lithium‐Ion Batteries
Sprache: Englisch
Publikationsjahr: April 2024
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energy Technology
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 4
Kollation: 5 Seiten
DOI: 10.1002/ente.202301213
Kurzbeschreibung (Abstract):

The exponentially increasing demand for lithium-ion batteries and their limited lifetime lead to a significant increase in spent batteries. With the goal to address the sustainability and recyclability to minimize negative effects for the environment, an efficient process is vital to recover valuable materials from spent batteries by recycling. In this regard, deep eutectic solvents (DESs) have attracted huge interest, due to their unique ability to efficiently extract valuable metals from spent batteries, while also being rendered greener and more cost-effective compared to current pyrometallurgy and/or hydrometallurgy. However, the DES approach also has its own set of challenges and drawbacks, which hinder the widespread use in the industry, including its restricted recyclability, high viscosity, low thermal and chemical stability, complex chemistry, as well as limited scalability. In this perspective, it is claimed that ongoing future research on the recycling of lithium-ion batteries requires the exploration of alternative processes including modification of current hydrometallurgy processes, if the consistent improvements cannot be achieved in DES system for recycling valuable elements.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 17 Apr 2024 12:19
Letzte Änderung: 17 Apr 2024 12:19
PPN: 517205564
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen