Fritschen, Anna ; Lindner, Nils ; Scholpp, Sebastian ; Richthof, Philipp ; Dietz, Jonas ; Linke, Philipp ; Guttenberg, Zeno ; Blaeser, Andreas (2024)
High-scale 3D-bioprinting platform for the automated production of vascularized organs-on-a-chip.
In: Advanced Healthcare Materials, 13 (17)
doi: 10.1002/adhm.202304028
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Abstract 3D bioprinting possesses the potential to revolutionize contemporary methodologies for fabricating tissue models employed in pharmaceutical research and experimental investigations. This is enhanced by combining bioprinting with advanced organs-on-a-chip (OOCs), which includes a complex arrangement of multiple cell types representing organ-specific cells, connective tissue, and vasculature. However, both OOCs and bioprinting so far demand a high degree of manual intervention, thereby impeding efficiency and inhibiting scalability to meet technological requirements. Through the combination of drop-on-demand bioprinting with robotic handling of microfluidic chips, a print procedure is achieved that is proficient in managing three distinct tissue models on a chip within only a minute, as well as capable of consecutively processing numerous OOCs without manual intervention. This process rests upon the development of a post-printing sealable microfluidic chip, that is compatible with different types of 3D-bioprinters and easily connected to a perfusion system. The capabilities of the automized bioprint process are showcased through the creation of a multicellular and vascularized liver carcinoma model on the chip. The process achieves full vascularization and stable microvascular network formation over 14 days of culture time, with pronounced spheroidal cell growth and albumin secretion of HepG2 serving as a representative cell model.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Fritschen, Anna ; Lindner, Nils ; Scholpp, Sebastian ; Richthof, Philipp ; Dietz, Jonas ; Linke, Philipp ; Guttenberg, Zeno ; Blaeser, Andreas |
Art des Eintrags: | Bibliographie |
Titel: | High-scale 3D-bioprinting platform for the automated production of vascularized organs-on-a-chip |
Sprache: | Englisch |
Publikationsjahr: | 2024 |
Ort: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Healthcare Materials |
Jahrgang/Volume einer Zeitschrift: | 13 |
(Heft-)Nummer: | 17 |
Kollation: | 11 Seiten |
DOI: | 10.1002/adhm.202304028 |
URL / URN: | https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.2023040... |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Abstract 3D bioprinting possesses the potential to revolutionize contemporary methodologies for fabricating tissue models employed in pharmaceutical research and experimental investigations. This is enhanced by combining bioprinting with advanced organs-on-a-chip (OOCs), which includes a complex arrangement of multiple cell types representing organ-specific cells, connective tissue, and vasculature. However, both OOCs and bioprinting so far demand a high degree of manual intervention, thereby impeding efficiency and inhibiting scalability to meet technological requirements. Through the combination of drop-on-demand bioprinting with robotic handling of microfluidic chips, a print procedure is achieved that is proficient in managing three distinct tissue models on a chip within only a minute, as well as capable of consecutively processing numerous OOCs without manual intervention. This process rests upon the development of a post-printing sealable microfluidic chip, that is compatible with different types of 3D-bioprinters and easily connected to a perfusion system. The capabilities of the automized bioprint process are showcased through the creation of a multicellular and vascularized liver carcinoma model on the chip. The process achieves full vascularization and stable microvascular network formation over 14 days of culture time, with pronounced spheroidal cell growth and albumin secretion of HepG2 serving as a representative cell model. |
Freie Schlagworte: | bioprinting, organ-on-a-chip, robotics, vascularization |
ID-Nummer: | Artikel-ID: 2304028 |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) 16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) > Biomedizinische Drucktechnologie (BMT) Interdisziplinäre Forschungsprojekte Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology |
Hinterlegungsdatum: | 16 Apr 2024 06:21 |
Letzte Änderung: | 17 Sep 2024 06:15 |
PPN: | 517168375 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
High‐Scale 3D‐Bioprinting Platform for the Automated Production of Vascularized Organs‐on‐a‐Chip. (deposited 16 Sep 2024 11:34)
- High-scale 3D-bioprinting platform for the automated production of vascularized organs-on-a-chip. (deposited 16 Apr 2024 06:21) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |