TU Darmstadt / ULB / TUbiblio

Foundations of E-Theory

Linker, Patrick (2016)
Foundations of E-Theory.
In: The Winnower
doi: 10.15200/winn.145350.06184
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Differential geometry is a powerful tool in various branches of science, especially in theoretical physics. Ordinary differential geometry requires differentiable manifolds. This research paper shows how concepts of differential geometry can also be applied to pure topological spaces. Such a theory is based on concepts like cohomology theory. It allows to define a curvature operator also on pure topological spaces without connection. The main advantage of this theory is that the only required information about the topological spaces is the structure of these spaces. A formulation of quantum gravity is also possible with this theory.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Linker, Patrick
Art des Eintrags: Bibliographie
Titel: Foundations of E-Theory
Sprache: Englisch
Publikationsjahr: 2016
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Winnower
DOI: 10.15200/winn.145350.06184
Kurzbeschreibung (Abstract):

Differential geometry is a powerful tool in various branches of science, especially in theoretical physics. Ordinary differential geometry requires differentiable manifolds. This research paper shows how concepts of differential geometry can also be applied to pure topological spaces. Such a theory is based on concepts like cohomology theory. It allows to define a curvature operator also on pure topological spaces without connection. The main advantage of this theory is that the only required information about the topological spaces is the structure of these spaces. A formulation of quantum gravity is also possible with this theory.

Freie Schlagworte: Semigroup, quantum gravity, general relativity, topology
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): Studienbereiche
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Geometrie und Approximation
05 Fachbereich Physik
Studienbereiche > Studienbereich Mechanik
Hinterlegungsdatum: 11 Apr 2024 11:13
Letzte Änderung: 11 Apr 2024 11:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen