TU Darmstadt / ULB / TUbiblio

Origin and quantification of the ultimate carrier concentration limits in In2O3 and Sn-doped In2O3

Klein, Andreas ; Frebel, Alexander ; Creutz, Kim Alexander ; Huang, Binxiang (2024)
Origin and quantification of the ultimate carrier concentration limits in In2O3 and Sn-doped In2O3.
In: Physical Review Materials, 8 (4)
doi: 10.1103/PhysRevMaterials.8.044601
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The ultimate limits of the carrier concentrations in In2O3 and Sn-doped In2O3 are derived from operando photoelectron spectroscopy of a solid oxide electrochemical cell with Y-doped ZrO2 as the oxygen electrolyte. It is demonstrated that the limits are determined by the transition of the oxygen vacancy to the neutral state and to the reduction of Sn4+ donors to Sn2+ electron traps, respectively. Maximum Fermi energies of 3.85 and 3.35eV above the valence band maximum are identified for ITO and In2O3. The ultimate carrier concentrations achievable by Sn doping and by oxygen vacancies are estimated to be 1.8–1.9×1021cm−3 and 6–7×1020cm−3.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Klein, Andreas ; Frebel, Alexander ; Creutz, Kim Alexander ; Huang, Binxiang
Art des Eintrags: Bibliographie
Titel: Origin and quantification of the ultimate carrier concentration limits in In2O3 and Sn-doped In2O3
Sprache: Englisch
Publikationsjahr: 1 April 2024
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Materials
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 4
DOI: 10.1103/PhysRevMaterials.8.044601
URL / URN: https://journals.aps.org/prmaterials/abstract/10.1103/PhysRe...
Kurzbeschreibung (Abstract):

The ultimate limits of the carrier concentrations in In2O3 and Sn-doped In2O3 are derived from operando photoelectron spectroscopy of a solid oxide electrochemical cell with Y-doped ZrO2 as the oxygen electrolyte. It is demonstrated that the limits are determined by the transition of the oxygen vacancy to the neutral state and to the reduction of Sn4+ donors to Sn2+ electron traps, respectively. Maximum Fermi energies of 3.85 and 3.35eV above the valence band maximum are identified for ITO and In2O3. The ultimate carrier concentrations achievable by Sn doping and by oxygen vacancies are estimated to be 1.8–1.9×1021cm−3 and 6–7×1020cm−3.

Zusätzliche Informationen:

Artikel-ID: 044601

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1548: FLAIR – Fermi Level Engineering Applied to Oxide Electroceramics
Hinterlegungsdatum: 09 Apr 2024 06:19
Letzte Änderung: 09 Apr 2024 08:48
PPN: 516995979
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen