TU Darmstadt / ULB / TUbiblio

Predicting Client Emotions and Therapist Interventions in Psychotherapy Dialogues

Mayer, Tobias ; Warikoo, Neha ; Eliassaf, Amir ; Atzil-Slonim, Dana ; Gurevych, Iryna (2024)
Predicting Client Emotions and Therapist Interventions in Psychotherapy Dialogues.
18th Conference of the European Chapter of the Association for Computational Linguistics. St. Julian's, Malta (17-22.03.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Natural Language Processing (NLP) can advance psychotherapy research by scaling up therapy dialogue analysis as well as by allowing researchers to examine client-therapist interactions in detail. Previous studies have mainly either explored the clients’ behavior or the therapists’ intervention in dialogues. Yet, modelling conversations from both dialogue participants is crucial to understanding the therapeutic interaction. This study explores speaker contribution-based dialogue acts at the utterance-level; i.e, the therapist - Intervention Prediction (IP) and the client - Emotion Recognition (ER) in psychotherapy using a pan-theoretical schema. We perform experiments with fine-tuned language models and light-weight adapter solutions on a Hebrew dataset. We deploy the results from our ER model predictions in investigating the coherence between client self-reports on emotion and the utterance-level emotions. Our best adapters achieved on-par performance with fully fine-tuned models, at 0.64 and 0.66 micro F1 for IP and ER, respectively. In addition, our analysis identifies ambiguities within categorical clinical coding, which can be used to fine-tune the coding schema. Finally, our results indicate a positive correlation between client self-reports and utterance-level emotions.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Mayer, Tobias ; Warikoo, Neha ; Eliassaf, Amir ; Atzil-Slonim, Dana ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Predicting Client Emotions and Therapist Interventions in Psychotherapy Dialogues
Sprache: Englisch
Publikationsjahr: März 2024
Ort: Kerville, TX
Verlag: ACL
Buchtitel: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Veranstaltungstitel: 18th Conference of the European Chapter of the Association for Computational Linguistics
Veranstaltungsort: St. Julian's, Malta
Veranstaltungsdatum: 17-22.03.2024
URL / URN: https://aclanthology.org/2024.eacl-long.88
Kurzbeschreibung (Abstract):

Natural Language Processing (NLP) can advance psychotherapy research by scaling up therapy dialogue analysis as well as by allowing researchers to examine client-therapist interactions in detail. Previous studies have mainly either explored the clients’ behavior or the therapists’ intervention in dialogues. Yet, modelling conversations from both dialogue participants is crucial to understanding the therapeutic interaction. This study explores speaker contribution-based dialogue acts at the utterance-level; i.e, the therapist - Intervention Prediction (IP) and the client - Emotion Recognition (ER) in psychotherapy using a pan-theoretical schema. We perform experiments with fine-tuned language models and light-weight adapter solutions on a Hebrew dataset. We deploy the results from our ER model predictions in investigating the coherence between client self-reports on emotion and the utterance-level emotions. Our best adapters achieved on-par performance with fully fine-tuned models, at 0.64 and 0.66 micro F1 for IP and ER, respectively. In addition, our analysis identifies ambiguities within categorical clinical coding, which can be used to fine-tune the coding schema. Finally, our results indicate a positive correlation between client self-reports and utterance-level emotions.

Freie Schlagworte: UKP_p_LOEWE_Spitzenprofessur, UKP_p_seditrah_factcheck
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 23 Apr 2024 08:48
Letzte Änderung: 01 Okt 2024 13:59
PPN: 52182821X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen