TU Darmstadt / ULB / TUbiblio

Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon

Koto, Fajri ; Beck, Tilman ; Talat, Zeerak ; Gurevych, Iryna ; Baldwin, Timothy (2024)
Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon.
18th Conference of the European Chapter of the Association for Computational Linguistics. St. Julian's, Malta (17.-22.03.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Improving multilingual language models capabilities in low-resource languages is generally difficult due to the scarcity of large-scale data in those languages. In this paper, we relax the reliance on texts in low-resource languages by using multilingual lexicons in pretraining to enhance multilingual capabilities. Specifically, we focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets. We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets, and large language models like GPT–3.5, BLOOMZ, and XGLM. These findings are observable for unseen low-resource languages to code-mixed scenarios involving high-resource languages.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Koto, Fajri ; Beck, Tilman ; Talat, Zeerak ; Gurevych, Iryna ; Baldwin, Timothy
Art des Eintrags: Bibliographie
Titel: Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon
Sprache: Englisch
Publikationsjahr: 23 März 2024
Verlag: ACL
Buchtitel: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Veranstaltungstitel: 18th Conference of the European Chapter of the Association for Computational Linguistics
Veranstaltungsort: St. Julian's, Malta
Veranstaltungsdatum: 17.-22.03.2024
URL / URN: https://aclanthology.org/2024.eacl-long.18
Kurzbeschreibung (Abstract):

Improving multilingual language models capabilities in low-resource languages is generally difficult due to the scarcity of large-scale data in those languages. In this paper, we relax the reliance on texts in low-resource languages by using multilingual lexicons in pretraining to enhance multilingual capabilities. Specifically, we focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets. We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets, and large language models like GPT–3.5, BLOOMZ, and XGLM. These findings are observable for unseen low-resource languages to code-mixed scenarios involving high-resource languages.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 12 Apr 2024 11:01
Letzte Änderung: 06 Aug 2024 12:20
PPN: 520385349
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen