TU Darmstadt / ULB / TUbiblio

Multi-stimuli operando transmission electron microscopy for two-terminal oxide-based devices

Recalde-Benitez, Oscar ; Pivak, Yevheniy ; Winkler, Robert ; Jiang, Tianshu ; Adabifiroozjaei, Esmaeil ; Perez-Garza, H. Hugo ; Molina-Luna, Leopoldo (2024)
Multi-stimuli operando transmission electron microscopy for two-terminal oxide-based devices.
In: Microscopy and Microanalysis
doi: 10.1093/mam/ozae023
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The integration of microelectromechanical systems (MEMS)-based chips for in situ transmission electron microscopy (TEM) has emerged as a highly promising technique in the study of nanoelectronic devices within their operational parameters. This innovative approach facilitates the comprehensive exploration of electrical properties resulting from the simultaneous exposure of these devices to a diverse range of stimuli. However, the control of each individual stimulus within the confined environment of an electron microscope is challenging. In this study, we present novel findings on the effect of a multi-stimuli application on the electrical performance of TEM lamella devices. To approximate the leakage current measurements of macroscale electronic devices in TEM lamellae, we have developed a postfocused ion beam (FIB) healing technique. This technique combines dedicated MEMS-based chips and in situ TEM gas cells, enabling biasing experiments under environmental conditions. Notably, our observations reveal a reoxidation process that leads to a decrease in leakage current for SrTiO3-based memristors and BaSrTiO3-based tunable capacitor devices following ion and electron bombardment in oxygen-rich environments. These findings represent a significant step toward the realization of multi-stimuli TEM experiments on metal–insulator–metal devices, offering the potential for further exploration and a deeper understanding of their intricate behavior.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Recalde-Benitez, Oscar ; Pivak, Yevheniy ; Winkler, Robert ; Jiang, Tianshu ; Adabifiroozjaei, Esmaeil ; Perez-Garza, H. Hugo ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: Multi-stimuli operando transmission electron microscopy for two-terminal oxide-based devices
Sprache: Englisch
Publikationsjahr: 25 März 2024
Verlag: Cambridge University Press
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Microscopy and Microanalysis
DOI: 10.1093/mam/ozae023
Kurzbeschreibung (Abstract):

The integration of microelectromechanical systems (MEMS)-based chips for in situ transmission electron microscopy (TEM) has emerged as a highly promising technique in the study of nanoelectronic devices within their operational parameters. This innovative approach facilitates the comprehensive exploration of electrical properties resulting from the simultaneous exposure of these devices to a diverse range of stimuli. However, the control of each individual stimulus within the confined environment of an electron microscope is challenging. In this study, we present novel findings on the effect of a multi-stimuli application on the electrical performance of TEM lamella devices. To approximate the leakage current measurements of macroscale electronic devices in TEM lamellae, we have developed a postfocused ion beam (FIB) healing technique. This technique combines dedicated MEMS-based chips and in situ TEM gas cells, enabling biasing experiments under environmental conditions. Notably, our observations reveal a reoxidation process that leads to a decrease in leakage current for SrTiO3-based memristors and BaSrTiO3-based tunable capacitor devices following ion and electron bombardment in oxygen-rich environments. These findings represent a significant step toward the realization of multi-stimuli TEM experiments on metal–insulator–metal devices, offering the potential for further exploration and a deeper understanding of their intricate behavior.

Freie Schlagworte: FIB, in situ TEM, MEMS, nanocell reactor, nanoelectronics, plasma cleaning
Zusätzliche Informationen:

Artikel-ID: ozae023

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
Hinterlegungsdatum: 28 Mär 2024 12:46
Letzte Änderung: 28 Mär 2024 12:51
PPN: 51671127X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen