Klimm, Max ; Pfetsch, Marc E. ; Raber, Rico ; Skutella, Martin (2022)
Packing under convex quadratic constraints.
In: Mathematical Programming: Series A, Series B, 192 (1-2)
doi: 10.1007/s10107-021-01675-6
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We consider a general class of binary packing problems with a convex quadratic knapsack constraint. We prove that these problems are APX-hard to approximate and present constant-factor approximation algorithms based upon two different algorithmic techniques: a rounding technique tailored to a convex relaxation in conjunction with a non-convex relaxation, and a greedy strategy. We further show that a combination of these techniques can be used to yield a monotone algorithm leading to a strategyproof mechanism for a game-theoretic variant of the problem. Finally, we present a computational study of the empirical approximation of these algorithms for problem instances arising in the context of real-world gas transport networks.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Klimm, Max ; Pfetsch, Marc E. ; Raber, Rico ; Skutella, Martin |
Art des Eintrags: | Bibliographie |
Titel: | Packing under convex quadratic constraints |
Sprache: | Englisch |
Publikationsjahr: | März 2022 |
Ort: | Berlin ; Heidelberg |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Mathematical Programming: Series A, Series B |
Jahrgang/Volume einer Zeitschrift: | 192 |
(Heft-)Nummer: | 1-2 |
DOI: | 10.1007/s10107-021-01675-6 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We consider a general class of binary packing problems with a convex quadratic knapsack constraint. We prove that these problems are APX-hard to approximate and present constant-factor approximation algorithms based upon two different algorithmic techniques: a rounding technique tailored to a convex relaxation in conjunction with a non-convex relaxation, and a greedy strategy. We further show that a combination of these techniques can be used to yield a monotone algorithm leading to a strategyproof mechanism for a game-theoretic variant of the problem. Finally, we present a computational study of the empirical approximation of these algorithms for problem instances arising in the context of real-world gas transport networks. |
Zusätzliche Informationen: | Mathematics Subject Classification: 90C27, 90C35, 68Q25 Special Issue: Integer Programming and Combinatorial Optimization (IPCO) 2020 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Optimierung |
Hinterlegungsdatum: | 28 Mär 2024 08:51 |
Letzte Änderung: | 28 Mär 2024 08:51 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Packing under convex quadratic constraints. (deposited 19 Mär 2024 13:51)
- Packing under convex quadratic constraints. (deposited 28 Mär 2024 08:51) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |