TU Darmstadt / ULB / TUbiblio

Deep Unrolling Network for SAR Image Despeckling

Chen, Che ; Chen, Lin ; Jiang, Xue ; Liu, Xingzhao ; Zoubir, Abdelhak M. (2024)
Deep Unrolling Network for SAR Image Despeckling.
49th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024). Seoul, Republic of Korea (14.-19.04.2024)
doi: 10.1109/ICASSP48485.2024.10447792
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Synthetic aperture radar (SAR) images are inherently affected by speckle noise. Deep learning-based methods have shown good potential in image denoising task. Most deep learning methods for denoising focus on additive Gaussian noise removal. However, SAR images are usually contaminated by non-Gaussian multiplicative speckle noise. In this paper, we propose a novel deep unrolling network named SAR-DURNet to deal with the SAR image despeckling problem. We establish optimization problem of speckle noise removal by using the priori of noise distribution, which can be sovled by half-quadratic splitting (HQS) method with iterative steps. We unroll the iterative process into a trainable deep unrolling network(SAR-DURNet). The parameters of the SAR-DURNet are trained end-to-end with simulated SAR image dataset. Experimental results on simulated test data and real SAR data show that the proposed approach has superior results in terms of quantitative performance metrics and the preservation of intricate visual details, compared to several well-known SAR image despeckling methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Chen, Che ; Chen, Lin ; Jiang, Xue ; Liu, Xingzhao ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: Deep Unrolling Network for SAR Image Despeckling
Sprache: Englisch
Publikationsjahr: 18 März 2024
Verlag: IEEE
Buchtitel: 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing: Proceedings
Veranstaltungstitel: 49th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024)
Veranstaltungsort: Seoul, Republic of Korea
Veranstaltungsdatum: 14.-19.04.2024
DOI: 10.1109/ICASSP48485.2024.10447792
Kurzbeschreibung (Abstract):

Synthetic aperture radar (SAR) images are inherently affected by speckle noise. Deep learning-based methods have shown good potential in image denoising task. Most deep learning methods for denoising focus on additive Gaussian noise removal. However, SAR images are usually contaminated by non-Gaussian multiplicative speckle noise. In this paper, we propose a novel deep unrolling network named SAR-DURNet to deal with the SAR image despeckling problem. We establish optimization problem of speckle noise removal by using the priori of noise distribution, which can be sovled by half-quadratic splitting (HQS) method with iterative steps. We unroll the iterative process into a trainable deep unrolling network(SAR-DURNet). The parameters of the SAR-DURNet are trained end-to-end with simulated SAR image dataset. Experimental results on simulated test data and real SAR data show that the proposed approach has superior results in terms of quantitative performance metrics and the preservation of intricate visual details, compared to several well-known SAR image despeckling methods.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 04 Apr 2024 11:52
Letzte Änderung: 16 Apr 2024 07:03
PPN: 517168928
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen