Li, Yingjie ; Zhang, Yuqian ; Tiffany, Leigh Anne ; Chen, Ruishan ; Cai, Meng ; Liu, Jianguo (2021)
Synthesizing social and environmental sensing to monitor the impact of large-scale infrastructure development.
In: Environmental Science & Policy, 124
doi: 10.1016/j.envsci.2021.07.020
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The booming development of large-scale infrastructure projects (LSIPs) facilitated by China’s Belt and Road Initiative (BRI) has drawn global concern regarding the scale, pace, and potential impact. Studies have largely focused on the geopolitical impact (i.e., politics and international relations) but less is known about social and environmental impact. This is in large part because consistent, high-resolution, cross-boundary social and environmental data at large scales are rather limited. To address the knowledge gap, this research developed a novel Socio-Environmental Sensing (SES) approach by synthesizing remote sensing imagery and geotagged Twitter data to map the socio-environmental impact of LSIPs. We demonstrated the applicability of this approach using two BRI flagship projects, namely, the Mombasa-Nairobi Standard Gauge Railway (SGR) in Kenya and the China-Pakistan Economic Corridor (CPEC) in Pakistan. Our analysis shows that both projects have led to a substantial loss of natural land (e.g., 3.7 % loss of vegetation in Kenya, and 23.3 % reduction of the glacier in Pakistan) but gains in artificial land (e.g., 4.2 % increase in cropland in Kenya, and 34.6 % expansion of built-up land in Pakistan). In addition, the BRI-LSIPs have largely improved local economic development, because nighttime light imagery revealed that regions near the BRI-LSIP sites became much brighter than other regions. Regarding the social aspect, we found that public sentiment toward the projects was largely positive and improved over time, which contradicts the prevalent pessimism to BRI-LSIPs by critics. Nevertheless, sentiment also presented strong spatial heterogeneity – regions around the BRI transportation hubs (usually large cities) most showed more positive sentiment than other regions. By spatially joining the georeferenced sentiment scores with environmental indicators from remote sensing, we further found that positive sentiment improved more in more developed regions, but only changed slightly in other regions. This study provides a novel approach to assess the socio-environmental impact of large-scale projects, and the findings would be useful for informing the implementation of future BRI projects across the globe.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Li, Yingjie ; Zhang, Yuqian ; Tiffany, Leigh Anne ; Chen, Ruishan ; Cai, Meng ; Liu, Jianguo |
Art des Eintrags: | Bibliographie |
Titel: | Synthesizing social and environmental sensing to monitor the impact of large-scale infrastructure development |
Sprache: | Englisch |
Publikationsjahr: | 1 Oktober 2021 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Environmental Science & Policy |
Jahrgang/Volume einer Zeitschrift: | 124 |
DOI: | 10.1016/j.envsci.2021.07.020 |
Kurzbeschreibung (Abstract): | The booming development of large-scale infrastructure projects (LSIPs) facilitated by China’s Belt and Road Initiative (BRI) has drawn global concern regarding the scale, pace, and potential impact. Studies have largely focused on the geopolitical impact (i.e., politics and international relations) but less is known about social and environmental impact. This is in large part because consistent, high-resolution, cross-boundary social and environmental data at large scales are rather limited. To address the knowledge gap, this research developed a novel Socio-Environmental Sensing (SES) approach by synthesizing remote sensing imagery and geotagged Twitter data to map the socio-environmental impact of LSIPs. We demonstrated the applicability of this approach using two BRI flagship projects, namely, the Mombasa-Nairobi Standard Gauge Railway (SGR) in Kenya and the China-Pakistan Economic Corridor (CPEC) in Pakistan. Our analysis shows that both projects have led to a substantial loss of natural land (e.g., 3.7 % loss of vegetation in Kenya, and 23.3 % reduction of the glacier in Pakistan) but gains in artificial land (e.g., 4.2 % increase in cropland in Kenya, and 34.6 % expansion of built-up land in Pakistan). In addition, the BRI-LSIPs have largely improved local economic development, because nighttime light imagery revealed that regions near the BRI-LSIP sites became much brighter than other regions. Regarding the social aspect, we found that public sentiment toward the projects was largely positive and improved over time, which contradicts the prevalent pessimism to BRI-LSIPs by critics. Nevertheless, sentiment also presented strong spatial heterogeneity – regions around the BRI transportation hubs (usually large cities) most showed more positive sentiment than other regions. By spatially joining the georeferenced sentiment scores with environmental indicators from remote sensing, we further found that positive sentiment improved more in more developed regions, but only changed slightly in other regions. This study provides a novel approach to assess the socio-environmental impact of large-scale projects, and the findings would be useful for informing the implementation of future BRI projects across the globe. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Verbund Institute für Verkehr 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Verbund Institute für Verkehr > Institut für Verkehrsplanung und Verkehrstechnik |
Hinterlegungsdatum: | 28 Mär 2024 10:34 |
Letzte Änderung: | 28 Mär 2024 10:34 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |