TU Darmstadt / ULB / TUbiblio

The future of the eHighway system: a vision of a sustainable, climate-resilient, and artificially intelligent megaproject

Linke, Regina ; Wilke, Jürgen K. ; Öztürk, Özgür ; Schöpp, Ferdinand ; Kassens-Noor, Eva (2022)
The future of the eHighway system: a vision of a sustainable, climate-resilient, and artificially intelligent megaproject.
In: Journal of Mega Infrastructure & Sustainable Development, 2 (S1)
doi: 10.1080/24724718.2022.2131087
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Artificial intelligence (AI) can be used to support intelligent and sustainable mobility solutions. For AI to be functional, it must be supplied with reliable data. With the continuous expansion of the data base for AI, it can fill data gaps based on learning effects and thus increase data quality. The electric Highway (eHighway) system as a sustainable mobility solution for long-distance road freight transport is a megaproject where the use of AI can be helpful. As a case study for this paper, the research project ELISA (‘ELektrifizierter, Innovativer Schwerverkehr auf Autobahnen’ = ‘electrified, innovative road freight transport on motorways’) was chosen in which the eHighway has been tested on a 10 km test track in Hesse (Germany) for about 2.5 years. The data on overhead line hybrid trucks and overhead line infrastructure obtained from the project was analysed in terms of their availability and combined to the overall availability of the eHighway system. These results provided the basis for a subsequent SWOT analysis to evaluate the integrability of AI in the eHighway system. The findings from the SWOT analysis show that with the continuous improvement of data availability and quality, the use of AI in the eHighway system is feasible. Energy, cost, and operational improvements in the eHighway system are expected through the use of AI.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Linke, Regina ; Wilke, Jürgen K. ; Öztürk, Özgür ; Schöpp, Ferdinand ; Kassens-Noor, Eva
Art des Eintrags: Bibliographie
Titel: The future of the eHighway system: a vision of a sustainable, climate-resilient, and artificially intelligent megaproject
Sprache: Englisch
Publikationsjahr: 9 Dezember 2022
Ort: London
Verlag: Routledge
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Mega Infrastructure & Sustainable Development
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: S1
DOI: 10.1080/24724718.2022.2131087
Kurzbeschreibung (Abstract):

Artificial intelligence (AI) can be used to support intelligent and sustainable mobility solutions. For AI to be functional, it must be supplied with reliable data. With the continuous expansion of the data base for AI, it can fill data gaps based on learning effects and thus increase data quality. The electric Highway (eHighway) system as a sustainable mobility solution for long-distance road freight transport is a megaproject where the use of AI can be helpful. As a case study for this paper, the research project ELISA (‘ELektrifizierter, Innovativer Schwerverkehr auf Autobahnen’ = ‘electrified, innovative road freight transport on motorways’) was chosen in which the eHighway has been tested on a 10 km test track in Hesse (Germany) for about 2.5 years. The data on overhead line hybrid trucks and overhead line infrastructure obtained from the project was analysed in terms of their availability and combined to the overall availability of the eHighway system. These results provided the basis for a subsequent SWOT analysis to evaluate the integrability of AI in the eHighway system. The findings from the SWOT analysis show that with the continuous improvement of data availability and quality, the use of AI in the eHighway system is feasible. Energy, cost, and operational improvements in the eHighway system are expected through the use of AI.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Verbund Institute für Verkehr
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Verbund Institute für Verkehr > Institut für Verkehrsplanung und Verkehrstechnik
Hinterlegungsdatum: 27 Mär 2024 15:18
Letzte Änderung: 18 Okt 2024 09:00
PPN: 522325017
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen