TU Darmstadt / ULB / TUbiblio

EFaR 2023: Efficient Face Recognition Competition

Kolf, Jan Niklas ; Boutros, Fadi ; Elliesen, Jurek ; Theuerkauf, Markus ; Damer, Naser ; Alansari, Mohamad ; Hay, Oussama Abdul ; Alansari, Sara ; Javed, Sajid ; Werghi, Naoufel ; Grm, Klemen ; Štruc, Vitomir ; Alonso-Fernandez, Fernando ; Diaz, Kevin Hernandez ; Bigun, Josef ; George, Anjith ; Ecabert, Christophe ; Shahreza, Hatef Otroshi ; Kotwal, Ketan ; Marcel, Sébastien ; Medvedev, Iurii ; Jin, Bo ; Nunes, Diogo ; Hassanpour, Ahmad ; Khatiwada, Pankaj ; Toor, Aafan Ahmad ; Yang, Bian (2023)
EFaR 2023: Efficient Face Recognition Competition.
International Joint Conference on Biometrics 2023. Ljubljana, Slovenia (25.-28.9.2023)
doi: 10.1109/IJCB57857.2023.10448917
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition received 17 submissions from 6 different teams. To drive further development of efficient face recognition models, the submitted solutions are ranked based on a weighted score of the achieved verification accuracies on a diverse set of benchmarks, as well as the deployability given by the number of floating-point operations and model size. The evaluation of submissions is extended to bias, cross-quality, and large-scale recognition benchmarks. Overall, the paper gives an overview of the achieved performance values of the submitted solutions as well as a diverse set of baselines. The submitted solutions use small, efficient network architectures to reduce the computational cost, some solutions apply model quantization. An outlook on possible techniques that are underrepresented in current solutions is given as well.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Kolf, Jan Niklas ; Boutros, Fadi ; Elliesen, Jurek ; Theuerkauf, Markus ; Damer, Naser ; Alansari, Mohamad ; Hay, Oussama Abdul ; Alansari, Sara ; Javed, Sajid ; Werghi, Naoufel ; Grm, Klemen ; Štruc, Vitomir ; Alonso-Fernandez, Fernando ; Diaz, Kevin Hernandez ; Bigun, Josef ; George, Anjith ; Ecabert, Christophe ; Shahreza, Hatef Otroshi ; Kotwal, Ketan ; Marcel, Sébastien ; Medvedev, Iurii ; Jin, Bo ; Nunes, Diogo ; Hassanpour, Ahmad ; Khatiwada, Pankaj ; Toor, Aafan Ahmad ; Yang, Bian
Art des Eintrags: Bibliographie
Titel: EFaR 2023: Efficient Face Recognition Competition
Sprache: Englisch
Publikationsjahr: 29 September 2023
Verlag: IEEE
Buchtitel: 2023 IEEE International Joint Conference on Biometrics (IJCB)
Veranstaltungstitel: International Joint Conference on Biometrics 2023
Veranstaltungsort: Ljubljana, Slovenia
Veranstaltungsdatum: 25.-28.9.2023
DOI: 10.1109/IJCB57857.2023.10448917
Kurzbeschreibung (Abstract):

This paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition received 17 submissions from 6 different teams. To drive further development of efficient face recognition models, the submitted solutions are ranked based on a weighted score of the achieved verification accuracies on a diverse set of benchmarks, as well as the deployability given by the number of floating-point operations and model size. The evaluation of submissions is extended to bias, cross-quality, and large-scale recognition benchmarks. Overall, the paper gives an overview of the achieved performance values of the submitted solutions as well as a diverse set of baselines. The submitted solutions use small, efficient network architectures to reduce the computational cost, some solutions apply model quantization. An outlook on possible techniques that are underrepresented in current solutions is given as well.

Freie Schlagworte: Biometrics, Face recognition, Machine learning, Deep learning, Efficiency
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Apr 2024 10:35
Letzte Änderung: 12 Apr 2024 10:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen