TU Darmstadt / ULB / TUbiblio

Depth-guided Robust Face Morphing Attack Detection

Rachalwar, Harsh ; Fang, Meiling ; Damer, Naser ; Das, Abhijit (2023)
Depth-guided Robust Face Morphing Attack Detection.
International Joint Conference on Biometrics 2023. Ljubljana, Slovenia (25.-28.9.2023)
doi: 10.1109/IJCB57857.2023.10449186
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Recently, morphing attack detection (MAD) solutions have achieved remarkable success with the aid of deep learning techniques. Despite the good performance achieved by binary label or binary pixel-wise supervised MAD models, the robustness of such models drops when facing variations in morphing attacks. In this work, we propose a novel process that leverages facial depth information to build a robust and generalized MAD. The depth map, representing the 3D shape of the face in a 2D image, is more informative compared to binary and binary pixel-wise map labels. To validate the idea we synthetically generated 3D depth map ground truth. Furthermore, we introduce a novel MAD architecture designed to capture subtle information from the 3D depth data. In addition, we analyze the training loss formulation to further enhance the MAD performance. Driven by the need for developing MAD solutions while preserving the privacy of individuals for legal and ethical reasons, we conduct our experiments on privacy-friendly synthetic training data and authentic evaluation data. The experimental results on existing public datasets in SYN-MAD 22 competition demonstrate the effectiveness of our proposed solution in terms of both robustness and generalization.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Rachalwar, Harsh ; Fang, Meiling ; Damer, Naser ; Das, Abhijit
Art des Eintrags: Bibliographie
Titel: Depth-guided Robust Face Morphing Attack Detection
Sprache: Englisch
Publikationsjahr: 29 September 2023
Verlag: IEEE
Buchtitel: 2023 IEEE International Joint Conference on Biometrics (IJCB)
Veranstaltungstitel: International Joint Conference on Biometrics 2023
Veranstaltungsort: Ljubljana, Slovenia
Veranstaltungsdatum: 25.-28.9.2023
DOI: 10.1109/IJCB57857.2023.10449186
Kurzbeschreibung (Abstract):

Recently, morphing attack detection (MAD) solutions have achieved remarkable success with the aid of deep learning techniques. Despite the good performance achieved by binary label or binary pixel-wise supervised MAD models, the robustness of such models drops when facing variations in morphing attacks. In this work, we propose a novel process that leverages facial depth information to build a robust and generalized MAD. The depth map, representing the 3D shape of the face in a 2D image, is more informative compared to binary and binary pixel-wise map labels. To validate the idea we synthetically generated 3D depth map ground truth. Furthermore, we introduce a novel MAD architecture designed to capture subtle information from the 3D depth data. In addition, we analyze the training loss formulation to further enhance the MAD performance. Driven by the need for developing MAD solutions while preserving the privacy of individuals for legal and ethical reasons, we conduct our experiments on privacy-friendly synthetic training data and authentic evaluation data. The experimental results on existing public datasets in SYN-MAD 22 competition demonstrate the effectiveness of our proposed solution in terms of both robustness and generalization.

Freie Schlagworte: Biometrics, Machine learning, Spoofing attacks, Face recognition, Morphing attack
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Apr 2024 10:31
Letzte Änderung: 12 Apr 2024 10:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen