Das, Abhijit ; Atreya, Saurabh ; Mukherjee, Aritra ; Vitek, Matej ; Li, Haiqing ; Wang, Caiyong ; Zhao, Guangzhe ; Boutros, Fadi ; Siebke, Patrick ; Kolf, Jan Niklas ; Damer, Naser ; Ye, Sun ; Hexin, Lu ; Aobo, Fan ; Sheng, You ; Nathan, Sabari ; Suganya, R. ; Rampriya, R. S. ; Sharma, Geetanjali ; Priyanka, P ; Nigam, Aditya ; Peer, Peter ; Pal, Umapada ; Štruc, Vitomir (2023)
Sclera Segmentation and Joint Recognition Benchmarking Competition: SSRBC 2023.
International Joint Conference on Biometrics 2023. Ljubljana, Slovenia (25.-28.9.2023)
doi: 10.1109/IJCB57857.2023.10448601
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper presents the summary of the Sclera Segmentation and Joint Recognition Benchmarking Competition (SSRBC 2023) held in conjunction with IEEE International Joint Conference on Biometrics (IJCB 2023). Different from the previous editions of the competition, SSRBC 2023 not only explored the performance of the latest and most advanced sclera segmentation models, but also studied the impact of segmentation quality on recognition performance. Five groups took part in SSRBC 2023 and submitted a total of six segmentation models and one recognition technique for scoring. The submitted solutions included a wide variety of conceptually diverse deep-learning models and were rigorously tested on three publicly available datasets, i.e., MASD, SBVPI and MOBIUS. Most of the segmentation models achieved encouraging segmentation and recognition performance. Most importantly, we observed that better segmentation results always translate into better verification performance.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Das, Abhijit ; Atreya, Saurabh ; Mukherjee, Aritra ; Vitek, Matej ; Li, Haiqing ; Wang, Caiyong ; Zhao, Guangzhe ; Boutros, Fadi ; Siebke, Patrick ; Kolf, Jan Niklas ; Damer, Naser ; Ye, Sun ; Hexin, Lu ; Aobo, Fan ; Sheng, You ; Nathan, Sabari ; Suganya, R. ; Rampriya, R. S. ; Sharma, Geetanjali ; Priyanka, P ; Nigam, Aditya ; Peer, Peter ; Pal, Umapada ; Štruc, Vitomir |
Art des Eintrags: | Bibliographie |
Titel: | Sclera Segmentation and Joint Recognition Benchmarking Competition: SSRBC 2023 |
Sprache: | Englisch |
Publikationsjahr: | 29 September 2023 |
Verlag: | IEEE |
Buchtitel: | 2023 IEEE International Joint Conference on Biometrics (IJCB) |
Veranstaltungstitel: | International Joint Conference on Biometrics 2023 |
Veranstaltungsort: | Ljubljana, Slovenia |
Veranstaltungsdatum: | 25.-28.9.2023 |
DOI: | 10.1109/IJCB57857.2023.10448601 |
Kurzbeschreibung (Abstract): | This paper presents the summary of the Sclera Segmentation and Joint Recognition Benchmarking Competition (SSRBC 2023) held in conjunction with IEEE International Joint Conference on Biometrics (IJCB 2023). Different from the previous editions of the competition, SSRBC 2023 not only explored the performance of the latest and most advanced sclera segmentation models, but also studied the impact of segmentation quality on recognition performance. Five groups took part in SSRBC 2023 and submitted a total of six segmentation models and one recognition technique for scoring. The submitted solutions included a wide variety of conceptually diverse deep-learning models and were rigorously tested on three publicly available datasets, i.e., MASD, SBVPI and MOBIUS. Most of the segmentation models achieved encouraging segmentation and recognition performance. Most importantly, we observed that better segmentation results always translate into better verification performance. |
Freie Schlagworte: | Biometrics, Machine learning, Image segmentation, Eye tracking, Iris recognition |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 12 Apr 2024 10:29 |
Letzte Änderung: | 12 Apr 2024 10:29 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |