TU Darmstadt / ULB / TUbiblio

Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation

Weber, Marie-Christin ; Fischer, Lisa ; Damerau, Alexandra ; Ponomarev, Igor ; Pfeiffenberger, Moritz ; Gaber, Timo ; Götschel, Sebastian ; Lang, Jens ; Röblitz, Susanna ; Buttgereit, Frank ; Ehrig, Rainald ; Lang, Annemarie (2024)
Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation.
In: Biofabrication, 2020, 12 (4)
doi: 10.26083/tuprints-00020376
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and (i) characterized regarding their cellular and matrix composition or secondly (ii) treated with interleukin-1β (IL–1β) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate the distribution of IL–1β, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Weber, Marie-Christin ; Fischer, Lisa ; Damerau, Alexandra ; Ponomarev, Igor ; Pfeiffenberger, Moritz ; Gaber, Timo ; Götschel, Sebastian ; Lang, Jens ; Röblitz, Susanna ; Buttgereit, Frank ; Ehrig, Rainald ; Lang, Annemarie
Art des Eintrags: Zweitveröffentlichung
Titel: Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation
Sprache: Englisch
Publikationsjahr: 19 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Biofabrication
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 4
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00020376
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20376
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and (i) characterized regarding their cellular and matrix composition or secondly (ii) treated with interleukin-1β (IL–1β) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate the distribution of IL–1β, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.

Freie Schlagworte: in vitro model, tissue engineered cartilage, cytokine-induced inflammation, in silico model
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-203769
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 19 Mär 2024 10:13
Letzte Änderung: 28 Mär 2024 10:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen