TU Darmstadt / ULB / TUbiblio

Fast Ion Conduction of Sintered Glass-Ceramic Lithium Ion Conductors Investigated by Impedance Spectroscopy and Coaxial Reflection Technique

Samsinger, R. F. ; Letz, M. ; Schuhmacher, J. ; Schneider, M. ; Roters, A. ; Kienemund, D. ; Maune, H. ; Kwade, A. (2024)
Fast Ion Conduction of Sintered Glass-Ceramic Lithium Ion Conductors Investigated by Impedance Spectroscopy and Coaxial Reflection Technique.
In: Journal of The Electrochemical Society, 2020, 167 (14)
doi: 10.26083/tuprints-00020396
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

As the ionic conductivity of solid-state lithium ion conductors rises, knowledge of the detailed conductivity mechanisms is harder to obtain due to the limited frequency resolution of the traditional impedance spectrometers. Moreover, the data is easily affected by the local microstructure (i.e. pores, grain-boundaries) and the preparation conditions. The aim of this work is to demonstrate the feasibility of the coaxial reflection technique as a reliable tool to study fast ionic conductors (i.e. σ > 10⁻⁴ S cm⁻¹). Especially the relative permittivity can be determined more accurately at room temperature. For the first time the electrical performance of LATP and LLZO manufactured via a scalable top-down glass-ceramic route is evaluated. The density turns out to be a key parameter influencing both relative permittivity and resulting conductivities. For a 100% dense LATP sample the coaxial reflection technique reveals a high grain-core conductivity of 6 × 10⁻³ S cm⁻¹ similar to the conductivity of ideal single crystals.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Samsinger, R. F. ; Letz, M. ; Schuhmacher, J. ; Schneider, M. ; Roters, A. ; Kienemund, D. ; Maune, H. ; Kwade, A.
Art des Eintrags: Zweitveröffentlichung
Titel: Fast Ion Conduction of Sintered Glass-Ceramic Lithium Ion Conductors Investigated by Impedance Spectroscopy and Coaxial Reflection Technique
Sprache: Englisch
Publikationsjahr: 19 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of The Electrochemical Society
Jahrgang/Volume einer Zeitschrift: 167
(Heft-)Nummer: 14
Kollation: 5 Seiten
DOI: 10.26083/tuprints-00020396
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20396
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

As the ionic conductivity of solid-state lithium ion conductors rises, knowledge of the detailed conductivity mechanisms is harder to obtain due to the limited frequency resolution of the traditional impedance spectrometers. Moreover, the data is easily affected by the local microstructure (i.e. pores, grain-boundaries) and the preparation conditions. The aim of this work is to demonstrate the feasibility of the coaxial reflection technique as a reliable tool to study fast ionic conductors (i.e. σ > 10⁻⁴ S cm⁻¹). Especially the relative permittivity can be determined more accurately at room temperature. For the first time the electrical performance of LATP and LLZO manufactured via a scalable top-down glass-ceramic route is evaluated. The density turns out to be a key parameter influencing both relative permittivity and resulting conductivities. For a 100% dense LATP sample the coaxial reflection technique reveals a high grain-core conductivity of 6 × 10⁻³ S cm⁻¹ similar to the conductivity of ideal single crystals.

Freie Schlagworte: Batteries - Lithium, Impedance Spectroscopy, coaxial reflection technique, ionic conductivity, all-solid-state batteries, LLZO, LATP
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-203967
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP) > Mikrowellentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP)
Hinterlegungsdatum: 19 Mär 2024 10:17
Letzte Änderung: 28 Mär 2024 10:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen