TU Darmstadt / ULB / TUbiblio

Packing under convex quadratic constraints

Klimm, Max ; Pfetsch, Marc E. ; Raber, Rico ; Skutella, Martin (2024)
Packing under convex quadratic constraints.
In: Mathematical Programming: Series A, Series B, 2022, 192 (1-2)
doi: 10.26083/tuprints-00023454
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We consider a general class of binary packing problems with a convex quadratic knapsack constraint. We prove that these problems are APX-hard to approximate and present constant-factor approximation algorithms based upon two different algorithmic techniques: a rounding technique tailored to a convex relaxation in conjunction with a non-convex relaxation, and a greedy strategy. We further show that a combination of these techniques can be used to yield a monotone algorithm leading to a strategyproof mechanism for a game-theoretic variant of the problem. Finally, we present a computational study of the empirical approximation of these algorithms for problem instances arising in the context of real-world gas transport networks.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Klimm, Max ; Pfetsch, Marc E. ; Raber, Rico ; Skutella, Martin
Art des Eintrags: Zweitveröffentlichung
Titel: Packing under convex quadratic constraints
Sprache: Englisch
Publikationsjahr: 19 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: März 2022
Ort der Erstveröffentlichung: Berlin ; Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematical Programming: Series A, Series B
Jahrgang/Volume einer Zeitschrift: 192
(Heft-)Nummer: 1-2
DOI: 10.26083/tuprints-00023454
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23454
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We consider a general class of binary packing problems with a convex quadratic knapsack constraint. We prove that these problems are APX-hard to approximate and present constant-factor approximation algorithms based upon two different algorithmic techniques: a rounding technique tailored to a convex relaxation in conjunction with a non-convex relaxation, and a greedy strategy. We further show that a combination of these techniques can be used to yield a monotone algorithm leading to a strategyproof mechanism for a game-theoretic variant of the problem. Finally, we present a computational study of the empirical approximation of these algorithms for problem instances arising in the context of real-world gas transport networks.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-234544
Zusätzliche Informationen:

Mathematics Subject Classification: 90C27, 90C35, 68Q25

Special Issue: Integer Programming and Combinatorial Optimization (IPCO) 2020

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
Hinterlegungsdatum: 19 Mär 2024 13:51
Letzte Änderung: 28 Mär 2024 08:51
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen