TU Darmstadt / ULB / TUbiblio

Hybrid Active-Passive Space Radiation Simulation Concept for GSI and the Future FAIR Facility

Schuy, Christoph ; Weber, Uli ; Durante, Marco (2020)
Hybrid Active-Passive Space Radiation Simulation Concept for GSI and the Future FAIR Facility.
In: Frontiers in Physics, 8
doi: 10.3389/fphy.2020.00337
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Space radiation is acknowledged as one of the main health risks for human exploration of the Solar system. Solar particle events (SPE) and the galactic cosmic radiation (GCR) can cause significant early and late morbidity, and damage mission critical microelectronics. Systematic studies of the interaction of energetic heavy ions with biological and electronic systems are typically performed at high-energy particle accelerators with a small subset of ions and energies in an independent and serialized way. This simplification can lead to inaccurate estimations of the harmful radiation effects of the full space radiation environment on man and machine. To mitigate these limitations, NASA has developed an irradiation system at the Brookhaven National Laboratory able to simulate the full GCR spectrum. ESA is also investing in ground-based space radiation studies in Europe, using the current and future facilities at GSI/FAIR in Darmstadt (Germany). We describe here an advanced hybrid active-passive space radiation simulation system to simulate GCR or SPE spectra. A predefined set of different monoenergetic ⁵⁶Fe beams will be fired on specially designed beam modulators consisting of filigree periodic structures. Their thickness, composition and geometry per used primary beam energy are optimized via 1D-transport calculations in such a way that the superposition of the produced radiation fields at the target position closely simulate the GCR in different scenarios. The highly complex modulators will be built using state-of-the-art manufacturing techniques like 3D-printing and precision casting. A Monte Carlo simulation of the spectrum produced in this setup is reported.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Schuy, Christoph ; Weber, Uli ; Durante, Marco
Art des Eintrags: Bibliographie
Titel: Hybrid Active-Passive Space Radiation Simulation Concept for GSI and the Future FAIR Facility
Sprache: Englisch
Publikationsjahr: 31 August 2020
Ort: Lausanne
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Physics
Jahrgang/Volume einer Zeitschrift: 8
Kollation: 11 Seiten
DOI: 10.3389/fphy.2020.00337
Zugehörige Links:
Kurzbeschreibung (Abstract):

Space radiation is acknowledged as one of the main health risks for human exploration of the Solar system. Solar particle events (SPE) and the galactic cosmic radiation (GCR) can cause significant early and late morbidity, and damage mission critical microelectronics. Systematic studies of the interaction of energetic heavy ions with biological and electronic systems are typically performed at high-energy particle accelerators with a small subset of ions and energies in an independent and serialized way. This simplification can lead to inaccurate estimations of the harmful radiation effects of the full space radiation environment on man and machine. To mitigate these limitations, NASA has developed an irradiation system at the Brookhaven National Laboratory able to simulate the full GCR spectrum. ESA is also investing in ground-based space radiation studies in Europe, using the current and future facilities at GSI/FAIR in Darmstadt (Germany). We describe here an advanced hybrid active-passive space radiation simulation system to simulate GCR or SPE spectra. A predefined set of different monoenergetic ⁵⁶Fe beams will be fired on specially designed beam modulators consisting of filigree periodic structures. Their thickness, composition and geometry per used primary beam energy are optimized via 1D-transport calculations in such a way that the superposition of the produced radiation fields at the target position closely simulate the GCR in different scenarios. The highly complex modulators will be built using state-of-the-art manufacturing techniques like 3D-printing and precision casting. A Monte Carlo simulation of the spectrum produced in this setup is reported.

Freie Schlagworte: galactic cosmic rays, solar particle events, space radiation protection, hybrid beam modulation, complex beam modulators
ID-Nummer: Artikel-ID: 337
Zusätzliche Informationen:

This article is part of the Research Topic: Applied Nuclear Physics at Accelerators

Specialty section: This article was submitted to Medical Physics and Imaging, a section of the journal Frontiers in Physics

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 19 Mär 2024 10:21
Letzte Änderung: 19 Mär 2024 10:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen