TU Darmstadt / ULB / TUbiblio

Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution

Amstutz, Hans ; Vormwald, Michael (2024)
Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution.
In: Archive of Applied Mechanics, 2021, 91 (4)
doi: 10.26083/tuprints-00023442
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In the present work, solutions are recapitulated according to the theory of elasticity for the deformations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided, too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a twofold statically indetermined structure. The system is solved and the exact solution of the general spherical inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion and matrix is presented.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Amstutz, Hans ; Vormwald, Michael
Art des Eintrags: Zweitveröffentlichung
Titel: Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution
Sprache: Englisch
Publikationsjahr: 18 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: April 2021
Ort der Erstveröffentlichung: Berlin ; Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Archive of Applied Mechanics
Jahrgang/Volume einer Zeitschrift: 91
(Heft-)Nummer: 4
DOI: 10.26083/tuprints-00023442
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23442
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In the present work, solutions are recapitulated according to the theory of elasticity for the deformations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided, too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a twofold statically indetermined structure. The system is solved and the exact solution of the general spherical inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion and matrix is presented.

Freie Schlagworte: Spherical inhomogeneity, Elastic inhomogeneity, Stress analysis, Strain analysis
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-234426
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
600 Technik, Medizin, angewandte Wissenschaften > 690 Hausbau, Bauhandwerk
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Stahlbau und Werkstoffmechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Stahlbau und Werkstoffmechanik > Fachgebiet Werkstoffmechanik
Hinterlegungsdatum: 18 Mär 2024 13:44
Letzte Änderung: 19 Mär 2024 07:44
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen