TU Darmstadt / ULB / TUbiblio

Investigating the Relationship between Image Quality and Crowdsourcing for Labeling

Budde, Lina E. ; Collmar, David ; Sörgel, Uwe ; Iwaszczuk, Dorota
Hrsg.: Kersten, Thomas P. ; Tilly, Nora ; Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) (2024)
Investigating the Relationship between Image Quality and Crowdsourcing for Labeling.
44. Wissenschaftlich-Technische Jahrestagung der DGPF. Remagen (13.03.2024 -14.03.2024)
doi: 10.24407/KXP:1884384242
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The quality of training data and the performance of machine learning approaches using those data stand in direct correlation: Even the best algorithms are not able to compensate low-quality training data, making the use of high-quality training data essential. However, generating high-quality training data is not trivial, especially as these data are required in large quantities. A common approach is the use of paid crowdsourcing, where the resulting label quality is contingent upon two key factors: the performance of the workers and the intrinsic quality of the initial dataset utilized for these tasks. Limiting factors, such as poor radiometry that leads to low-quality images, must be taken into consideration when evaluating data acquired through crowdsourcing. We examine the relationship between image quality and the output performance of crowdsourcing tasks in the context of tree crown detection.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Herausgeber: Kersten, Thomas P. ; Tilly, Nora
Autor(en): Budde, Lina E. ; Collmar, David ; Sörgel, Uwe ; Iwaszczuk, Dorota
Art des Eintrags: Bibliographie
Titel: Investigating the Relationship between Image Quality and Crowdsourcing for Labeling
Sprache: Englisch
Publikationsjahr: März 2024
Ort: Stuttgart
Verlag: Geschäftsstelle der DGPF
Buchtitel: DGPF-Jahrestagung 2024: Stadt, Land, Fluss - Daten vernetzen : Beiträge
Reihe: Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.
Band einer Reihe: 32
Veranstaltungstitel: 44. Wissenschaftlich-Technische Jahrestagung der DGPF
Veranstaltungsort: Remagen
Veranstaltungsdatum: 13.03.2024 -14.03.2024
DOI: 10.24407/KXP:1884384242
Zugehörige Links:
Kurzbeschreibung (Abstract):

The quality of training data and the performance of machine learning approaches using those data stand in direct correlation: Even the best algorithms are not able to compensate low-quality training data, making the use of high-quality training data essential. However, generating high-quality training data is not trivial, especially as these data are required in large quantities. A common approach is the use of paid crowdsourcing, where the resulting label quality is contingent upon two key factors: the performance of the workers and the intrinsic quality of the initial dataset utilized for these tasks. Limiting factors, such as poor radiometry that leads to low-quality images, must be taken into consideration when evaluating data acquired through crowdsourcing. We examine the relationship between image quality and the output performance of crowdsourcing tasks in the context of tree crown detection.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Fernerkundung und Bildanalyse
Hinterlegungsdatum: 13 Jun 2024 05:57
Letzte Änderung: 01 Jul 2024 09:05
PPN: 519476638
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen