TU Darmstadt / ULB / TUbiblio

False Discovery Rate Control for Gaussian Graphical Models via Neighborhood Screening

Koka, Taulant ; Machkour, Jasin ; Muma, Michael (2024)
False Discovery Rate Control for Gaussian Graphical Models via Neighborhood Screening.
doi: 10.48550/arXiv.2401.09979
Report, Bibliographie

Kurzbeschreibung (Abstract)

Gaussian graphical models emerge in a wide range of fields. They model the statistical relationships between variables as a graph, where an edge between two variables indicates conditional dependence. Unfortunately, well-established estimators, such as the graphical lasso or neighborhood selection, are known to be susceptible to a high prevalence of false edge detections. False detections may encourage inaccurate or even incorrect scientific interpretations, with major implications in applications, such as biomedicine or healthcare. In this paper, we introduce a nodewise variable selection approach to graph learning and provably control the false discovery rate of the selected edge set at a self-estimated level. A novel fusion method of the individual neighborhoods outputs an undirected graph estimate. The proposed method is parameter-free and does not require tuning by the user. Benchmarks against competing false discovery rate controlling methods in numerical experiments considering different graph topologies show a significant gain in performance.

Typ des Eintrags: Report
Erschienen: 2024
Autor(en): Koka, Taulant ; Machkour, Jasin ; Muma, Michael
Art des Eintrags: Bibliographie
Titel: False Discovery Rate Control for Gaussian Graphical Models via Neighborhood Screening
Sprache: Englisch
Publikationsjahr: 18 Januar 2024
Verlag: arXiV
Reihe: Machine Learning
Auflage: 1. Version
DOI: 10.48550/arXiv.2401.09979
Kurzbeschreibung (Abstract):

Gaussian graphical models emerge in a wide range of fields. They model the statistical relationships between variables as a graph, where an edge between two variables indicates conditional dependence. Unfortunately, well-established estimators, such as the graphical lasso or neighborhood selection, are known to be susceptible to a high prevalence of false edge detections. False detections may encourage inaccurate or even incorrect scientific interpretations, with major implications in applications, such as biomedicine or healthcare. In this paper, we introduce a nodewise variable selection approach to graph learning and provably control the false discovery rate of the selected edge set at a self-estimated level. A novel fusion method of the individual neighborhoods outputs an undirected graph estimate. The proposed method is parameter-free and does not require tuning by the user. Benchmarks against competing false discovery rate controlling methods in numerical experiments considering different graph topologies show a significant gain in performance.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 03 Apr 2024 11:46
Letzte Änderung: 03 Apr 2024 11:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen