TU Darmstadt / ULB / TUbiblio

Thermal conductivity analysis of polymer‐derived nanocomposite via image‐based structure reconstruction, computational homogenization, and machine learning

Fathidoost, Mozhdeh ; Yang, Yangyiwei ; Thor, Nathalie ; Bernauer, Jan ; Pundt, Astrid ; Riedel, Ralf ; Xu, Bai-Xiang (2024)
Thermal conductivity analysis of polymer‐derived nanocomposite via image‐based structure reconstruction, computational homogenization, and machine learning.
In: Advanced Engineering Materials, 26 (17)
doi: 10.1002/adem.202302021
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Macroscopic thermal properties of engineered or inherent composites depend substantially on the composite structure and the interface characteristics. While it is acknowledged that unveiling such dependency relation is essential for materials design, the complexity involved in, e.g., microstructure representation and limited data impedes the research progress. Herein, this issue is tackled by machine learning techniques on image-based microstructure and property data predicted from physics simulations, along with experimental validation. The methodology is demonstrated for the model system (Hf₀.₇ Ta₀.₃) C/SiC ultrahigh-temperature ceramic nanocomposite. The structure is reconstructed from scanning electron microscope images, and is resolved by a diffuse-interface representation, which is advantageous in handling complicated structure and interface properties. Subsequently, hierarchical finite element homogenization is carried out to evaluate the effective thermal conductivity. A thorough comparison between the computed results and experimentally measured data, conducted across diverse temperatures and varying interface thermal resistances, reveals a high level of agreement. The observed agreement allows for the inverse estimation of the interface thermal resistance, a parameter typically challenging to ascertain directly through experimental means. Utilizing comprehensive data, a machine learning surrogate model has been meticulously trained to accurately predict the effective thermal conductivity of composite structures with exceptional performance.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Fathidoost, Mozhdeh ; Yang, Yangyiwei ; Thor, Nathalie ; Bernauer, Jan ; Pundt, Astrid ; Riedel, Ralf ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: Thermal conductivity analysis of polymer‐derived nanocomposite via image‐based structure reconstruction, computational homogenization, and machine learning
Sprache: Englisch
Publikationsjahr: 1 März 2024
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 17
Kollation: 11 Seiten
DOI: 10.1002/adem.202302021
Zugehörige Links:
Kurzbeschreibung (Abstract):

Macroscopic thermal properties of engineered or inherent composites depend substantially on the composite structure and the interface characteristics. While it is acknowledged that unveiling such dependency relation is essential for materials design, the complexity involved in, e.g., microstructure representation and limited data impedes the research progress. Herein, this issue is tackled by machine learning techniques on image-based microstructure and property data predicted from physics simulations, along with experimental validation. The methodology is demonstrated for the model system (Hf₀.₇ Ta₀.₃) C/SiC ultrahigh-temperature ceramic nanocomposite. The structure is reconstructed from scanning electron microscope images, and is resolved by a diffuse-interface representation, which is advantageous in handling complicated structure and interface properties. Subsequently, hierarchical finite element homogenization is carried out to evaluate the effective thermal conductivity. A thorough comparison between the computed results and experimentally measured data, conducted across diverse temperatures and varying interface thermal resistances, reveals a high level of agreement. The observed agreement allows for the inverse estimation of the interface thermal resistance, a parameter typically challenging to ascertain directly through experimental means. Utilizing comprehensive data, a machine learning surrogate model has been meticulously trained to accurately predict the effective thermal conductivity of composite structures with exceptional performance.

Freie Schlagworte: computational thermal homogenization, machine learning, polymer-derived ceramics, two-point statistics
ID-Nummer: Artikel-ID: 2302021
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 15 Mär 2024 08:25
Letzte Änderung: 19 Nov 2024 06:54
PPN: 516332597
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen