TU Darmstadt / ULB / TUbiblio

The overlapping effect and fusion protocols of data augmentation techniques in iris PAD

Fang, Meiling ; Damer, Naser ; Boutros, Fadi ; Kirchbuchner, Florian ; Kuijper, Arjan (2024)
The overlapping effect and fusion protocols of data augmentation techniques in iris PAD.
In: Machine Vision and Applications, 2022, 33 (1)
doi: 10.26083/tuprints-00023431
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Iris Presentation Attack Detection (PAD) algorithms address the vulnerability of iris recognition systems to presentation attacks. With the great success of deep learning methods in various computer vision fields, neural network-based iris PAD algorithms emerged. However, most PAD networks suffer from overfitting due to insufficient iris data variability. Therefore, we explore the impact of various data augmentation techniques on performance and the generalizability of iris PAD. We apply several data augmentation methods to generate variability, such as shift, rotation, and brightness. We provide in-depth analyses of the overlapping effect of these methods on performance. In addition to these widely used augmentation techniques, we also propose an augmentation selection protocol based on the assumption that various augmentation techniques contribute differently to the PAD performance. Moreover, two fusion methods are performed for more comparisons: the strategy-level and the score-level combination. We demonstrate experiments on two fine-tuned models and one trained from the scratch network and perform on the datasets in the Iris-LivDet-2017 competition designed for generalizability evaluation. Our experimental results show that augmentation methods improve iris PAD performance in many cases. Our least overlap-based augmentation selection protocol achieves the lower error rates for two networks. Besides, the shift augmentation strategy also exceeds state-of-the-art (SoTA) algorithms on the Clarkson and IIITD-WVU datasets.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Fang, Meiling ; Damer, Naser ; Boutros, Fadi ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Zweitveröffentlichung
Titel: The overlapping effect and fusion protocols of data augmentation techniques in iris PAD
Sprache: Englisch
Publikationsjahr: 12 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Januar 2022
Ort der Erstveröffentlichung: Berlin; Heidelberg
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Machine Vision and Applications
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 1
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00023431
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23431
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Iris Presentation Attack Detection (PAD) algorithms address the vulnerability of iris recognition systems to presentation attacks. With the great success of deep learning methods in various computer vision fields, neural network-based iris PAD algorithms emerged. However, most PAD networks suffer from overfitting due to insufficient iris data variability. Therefore, we explore the impact of various data augmentation techniques on performance and the generalizability of iris PAD. We apply several data augmentation methods to generate variability, such as shift, rotation, and brightness. We provide in-depth analyses of the overlapping effect of these methods on performance. In addition to these widely used augmentation techniques, we also propose an augmentation selection protocol based on the assumption that various augmentation techniques contribute differently to the PAD performance. Moreover, two fusion methods are performed for more comparisons: the strategy-level and the score-level combination. We demonstrate experiments on two fine-tuned models and one trained from the scratch network and perform on the datasets in the Iris-LivDet-2017 competition designed for generalizability evaluation. Our experimental results show that augmentation methods improve iris PAD performance in many cases. Our least overlap-based augmentation selection protocol achieves the lower error rates for two networks. Besides, the shift augmentation strategy also exceeds state-of-the-art (SoTA) algorithms on the Clarkson and IIITD-WVU datasets.

Freie Schlagworte: Iris presentation attack detection, Data augmentation, Deep learning
ID-Nummer: Artikel-ID: 8
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-234310
Zusätzliche Informationen:

Special Issue on 25th ICPR - Computer Vision, Robotics and Intelligent Systems

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Fraunhofer IGD
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 12 Mär 2024 13:26
Letzte Änderung: 14 Mär 2024 14:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen