TU Darmstadt / ULB / TUbiblio

Structural response of titanate pyrochlores to swift heavy ion irradiation

Shamblin, Jacob ; Tracy, Cameron L. ; Ewing, Rodney C. ; Zhang, Fuxiang ; Li, Weixing ; Trautmann, Christina ; Lang, Maik (2016)
Structural response of titanate pyrochlores to swift heavy ion irradiation.
In: Acta Materialia, 117
doi: 10.1016/j.actamat.2016.07.017
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The structure, size, and morphology of ion tracks resulting from irradiation of five different pyrochlore compositions (A2Ti2O7, A = Yb, Er, Y, Gd, Sm) with 2.2 GeV 197Au ions were investigated by means of synchrotron X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Radiation-induced amorphization occurred in all five materials analyzed following an exponential rate as a function of ion fluence. XRD patterns showed a general trend of increasing susceptibility of amorphization with increasing ratio of A- to B-site cation ionic radii (rA/rB) with the exception of Y2Ti2O7 and Sm2Ti2O7. This indicates that the track size does not necessarily increase with rA/rB, in contrast with results from previous swift heavy ion studies on Gd2Zr2-xTixO7 pyrochlore materials. For Y2Ti2O7, this effect is attributed to the significantly lower electron density of this material relative to the lanthanide-bearing pyrochlores, thus lowering the electronic energy loss (dE/dx) of the high-energy ions in this composition. An energy loss normalization procedure was performed which reveals an initial increase of amorphous track size with rA/rB that saturates above a cation radius ratio larger than Gd2Ti2O7. This is in agreement with previous low-energy ion irradiation experiments and first principles calculations of the disordering energy of titanate pyrochlores indicating that the same trends in disordering energy apply to radiation damage induced in both the nuclear and electronic energy loss regimes. HRTEM images indicate that single ion tracks in Yb2Ti2O7 and Er2Ti2O7, which have small A-site cations and low rA/rB, exhibit a core-shell structure with a small amorphous core surrounded by a larger disordered shell. In contrast, single tracks in Gd2Ti2O7 and Sm2Ti2O7, have a larger amorphous core with minimal disordered shells.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Shamblin, Jacob ; Tracy, Cameron L. ; Ewing, Rodney C. ; Zhang, Fuxiang ; Li, Weixing ; Trautmann, Christina ; Lang, Maik
Art des Eintrags: Bibliographie
Titel: Structural response of titanate pyrochlores to swift heavy ion irradiation
Sprache: Englisch
Publikationsjahr: 15 September 2016
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 117
DOI: 10.1016/j.actamat.2016.07.017
Kurzbeschreibung (Abstract):

The structure, size, and morphology of ion tracks resulting from irradiation of five different pyrochlore compositions (A2Ti2O7, A = Yb, Er, Y, Gd, Sm) with 2.2 GeV 197Au ions were investigated by means of synchrotron X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Radiation-induced amorphization occurred in all five materials analyzed following an exponential rate as a function of ion fluence. XRD patterns showed a general trend of increasing susceptibility of amorphization with increasing ratio of A- to B-site cation ionic radii (rA/rB) with the exception of Y2Ti2O7 and Sm2Ti2O7. This indicates that the track size does not necessarily increase with rA/rB, in contrast with results from previous swift heavy ion studies on Gd2Zr2-xTixO7 pyrochlore materials. For Y2Ti2O7, this effect is attributed to the significantly lower electron density of this material relative to the lanthanide-bearing pyrochlores, thus lowering the electronic energy loss (dE/dx) of the high-energy ions in this composition. An energy loss normalization procedure was performed which reveals an initial increase of amorphous track size with rA/rB that saturates above a cation radius ratio larger than Gd2Ti2O7. This is in agreement with previous low-energy ion irradiation experiments and first principles calculations of the disordering energy of titanate pyrochlores indicating that the same trends in disordering energy apply to radiation damage induced in both the nuclear and electronic energy loss regimes. HRTEM images indicate that single ion tracks in Yb2Ti2O7 and Er2Ti2O7, which have small A-site cations and low rA/rB, exhibit a core-shell structure with a small amorphous core surrounded by a larger disordered shell. In contrast, single tracks in Gd2Ti2O7 and Sm2Ti2O7, have a larger amorphous core with minimal disordered shells.

Freie Schlagworte: pyrochlore, amorphization, nuclear waste, swift heavy ions, track formation
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 13 Mär 2024 12:17
Letzte Änderung: 13 Mär 2024 12:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen