TU Darmstadt / ULB / TUbiblio

What is effective transfinite recursion in reverse mathematics?

Freund, Anton (2020)
What is effective transfinite recursion in reverse mathematics?
In: Mathematical Logic Quarterly, 66 (4)
doi: 10.1002/malq.202000042
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In the context of reverse mathematics, effective transfinite recursion refers to a principle that allows us to construct sequences of sets by recursion along arbitrary well orders, provided that each set is Δ¹₀‐definable relative to the previous stages of the recursion. It is known that this principle is provable in ACA₀. In the present note, we argue that a common formulation of effective transfinite recursion is too restrictive. We then propose a more liberal formulation, which appears very natural and is still provable in ACA₀.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Freund, Anton
Art des Eintrags: Bibliographie
Titel: What is effective transfinite recursion in reverse mathematics?
Sprache: Englisch
Publikationsjahr: 2020
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematical Logic Quarterly
Jahrgang/Volume einer Zeitschrift: 66
(Heft-)Nummer: 4
DOI: 10.1002/malq.202000042
Zugehörige Links:
Kurzbeschreibung (Abstract):

In the context of reverse mathematics, effective transfinite recursion refers to a principle that allows us to construct sequences of sets by recursion along arbitrary well orders, provided that each set is Δ¹₀‐definable relative to the previous stages of the recursion. It is known that this principle is provable in ACA₀. In the present note, we argue that a common formulation of effective transfinite recursion is too restrictive. We then propose a more liberal formulation, which appears very natural and is still provable in ACA₀.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Logik
Hinterlegungsdatum: 12 Mär 2024 09:46
Letzte Änderung: 12 Mär 2024 09:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen