TU Darmstadt / ULB / TUbiblio

Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning

Budde, Lina E. ; Bulatov, Dimitri ; Strauss, Eva ; Qiu, Kevin ; Iwaszczuk, Dorota
Hrsg.: Köthe, Ullrich ; Rother, Carsten ; German Association for Pattern Recognition (DAGM) (2024)
Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning.
DAGM German Conference on Pattern Recognition. Heidelberg, Germany (19.09. - 22.9.2023)
doi: 10.1007/978-3-031-54605-1_17
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The quality of land use maps often refers to the data quality, but distributional uncertainty between training and test data must also be considered. In order to address this uncertainty, we follow the strategy to detect out-of-distribution samples using uncertainty maps. Then, we use supervised machine learning to identify those samples. For the investigations, we use an uncertainty metric adapted from depth maps fusion and Monte-Carlo dropout based predicted probabilities. The results show a correlation between out-of-distribution samples, misclassifications and uncertainty. Thus, on the one hand, out-of-distribution samples are identifiable through uncertainty, on the other hand it is difficult to distinguish between misclassification, anomalies and out-of-distribution.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Herausgeber: Köthe, Ullrich ; Rother, Carsten
Autor(en): Budde, Lina E. ; Bulatov, Dimitri ; Strauss, Eva ; Qiu, Kevin ; Iwaszczuk, Dorota
Art des Eintrags: Bibliographie
Titel: Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning
Sprache: Englisch
Publikationsjahr: 8 März 2024
Ort: Cham
Verlag: Springer Nature Switzerland
Buchtitel: Pattern Recognition
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 14264
Veranstaltungstitel: DAGM German Conference on Pattern Recognition
Veranstaltungsort: Heidelberg, Germany
Veranstaltungsdatum: 19.09. - 22.9.2023
DOI: 10.1007/978-3-031-54605-1_17
URL / URN: https://doi.org/10.1007/978-3-031-54605-1_17
Kurzbeschreibung (Abstract):

The quality of land use maps often refers to the data quality, but distributional uncertainty between training and test data must also be considered. In order to address this uncertainty, we follow the strategy to detect out-of-distribution samples using uncertainty maps. Then, we use supervised machine learning to identify those samples. For the investigations, we use an uncertainty metric adapted from depth maps fusion and Monte-Carlo dropout based predicted probabilities. The results show a correlation between out-of-distribution samples, misclassifications and uncertainty. Thus, on the one hand, out-of-distribution samples are identifiable through uncertainty, on the other hand it is difficult to distinguish between misclassification, anomalies and out-of-distribution.

Freie Schlagworte: Potsdam dataset, error detection, semantic segmentation
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Fernerkundung und Bildanalyse
Hinterlegungsdatum: 12 Mär 2024 07:13
Letzte Änderung: 12 Mär 2024 07:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen