TU Darmstadt / ULB / TUbiblio

Automatic data-driven design and 3D printing of custom ocular prostheses

Reinhard, Johann ; Urban, Philipp ; Bell, Stephen ; Carpenter, David ; Sagoo, Mandeep S. (2024)
Automatic data-driven design and 3D printing of custom ocular prostheses.
In: Nature Communications, 15 (1)
doi: 10.1038/s41467-024-45345-5
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Millions of people require custom ocular prostheses due to eye loss or congenital defects. The current fully manual manufacturing processes used by highly skilled ocularists are time-consuming with varying quality. Additive manufacturing technology has the potential to simplify the manufacture of ocular prosthetics, but existing approaches just replace to various degrees craftsmanship by manual digital design and still require substantial expertise and time. Here we present an automatic digital end-to-end process for producing custom ocular prostheses that uses image data from an anterior segment optical coherence tomography device and considers both shape and appearance. Our approach uses a statistical shape model to predict, based on incomplete surface information of the eye socket, a best fitting prosthesis shape. We use a colour characterized image of the healthy fellow eye to determine and procedurally generate the prosthesis’s appearance that matches the fellow eye. The prosthesis is manufactured using a multi-material full-colour 3D printer and postprocessed to satisfy regulatory compliance. We demonstrate the effectiveness of our approach by presenting results for 10 clinic patients who received a 3D printed prosthesis. Compared to a current manual process, our approach requires five times less labour of the ocularist and produces reproducible output.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Reinhard, Johann ; Urban, Philipp ; Bell, Stephen ; Carpenter, David ; Sagoo, Mandeep S.
Art des Eintrags: Bibliographie
Titel: Automatic data-driven design and 3D printing of custom ocular prostheses
Sprache: Englisch
Publikationsjahr: 27 Februar 2024
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 1
DOI: 10.1038/s41467-024-45345-5
Kurzbeschreibung (Abstract):

Millions of people require custom ocular prostheses due to eye loss or congenital defects. The current fully manual manufacturing processes used by highly skilled ocularists are time-consuming with varying quality. Additive manufacturing technology has the potential to simplify the manufacture of ocular prosthetics, but existing approaches just replace to various degrees craftsmanship by manual digital design and still require substantial expertise and time. Here we present an automatic digital end-to-end process for producing custom ocular prostheses that uses image data from an anterior segment optical coherence tomography device and considers both shape and appearance. Our approach uses a statistical shape model to predict, based on incomplete surface information of the eye socket, a best fitting prosthesis shape. We use a colour characterized image of the healthy fellow eye to determine and procedurally generate the prosthesis’s appearance that matches the fellow eye. The prosthesis is manufactured using a multi-material full-colour 3D printer and postprocessed to satisfy regulatory compliance. We demonstrate the effectiveness of our approach by presenting results for 10 clinic patients who received a 3D printed prosthesis. Compared to a current manual process, our approach requires five times less labour of the ocularist and produces reproducible output.

Freie Schlagworte: 3D models, 3D Printing, 3D Realism, 3D Data processing, Customization, Statistical shape models, SSM, Color correction
Zusätzliche Informationen:

Art.No.: 1360

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 20 Mär 2024 14:16
Letzte Änderung: 20 Mär 2024 14:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen