TU Darmstadt / ULB / TUbiblio

Joint Sparse Estimation with Cardinality Constraint via Mixed-Integer Semidefinite Programming

Liu, Tianyi ; Matter, Frederic ; Sorg, Alexander ; Pfetsch, Marc E. ; Haardt, Martin ; Pesavento, Marius (2023)
Joint Sparse Estimation with Cardinality Constraint via Mixed-Integer Semidefinite Programming.
9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Herradura, Costa Rica (10.-13.12.2023)
doi: 10.1109/CAMSAP58249.2023.10403415
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The multiple measurement vectors (MMV) problem refers to the joint estimation of multiple signal realizations where the signal samples share a common sparse support over a known dictionary, which is a fundamental challenge in various applications in signal processing, e.g., direction-of-arrival (DOA) estimation. We consider the maximum a posteriori (MAP) estimation of an MMV problem, which is classically formulated as a regularized least-squares (LS) problem with an ℓ2,0 -norm constraint and derive an equivalent mixed-integer semidefinite program (MISDP) reformulation, which can be solved by state-of-the-art numerical MISDP solvers at an affordable computation time. Numerical simulations in the context of DOA estimation demonstrate the improved error performance of our proposed method in comparison to several popular DOA estimation methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Liu, Tianyi ; Matter, Frederic ; Sorg, Alexander ; Pfetsch, Marc E. ; Haardt, Martin ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: Joint Sparse Estimation with Cardinality Constraint via Mixed-Integer Semidefinite Programming
Sprache: Englisch
Publikationsjahr: 14 Dezember 2023
Verlag: IEEE
Buchtitel: 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP
Veranstaltungstitel: 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Veranstaltungsort: Herradura, Costa Rica
Veranstaltungsdatum: 10.-13.12.2023
DOI: 10.1109/CAMSAP58249.2023.10403415
Kurzbeschreibung (Abstract):

The multiple measurement vectors (MMV) problem refers to the joint estimation of multiple signal realizations where the signal samples share a common sparse support over a known dictionary, which is a fundamental challenge in various applications in signal processing, e.g., direction-of-arrival (DOA) estimation. We consider the maximum a posteriori (MAP) estimation of an MMV problem, which is classically formulated as a regularized least-squares (LS) problem with an ℓ2,0 -norm constraint and derive an equivalent mixed-integer semidefinite program (MISDP) reformulation, which can be solved by state-of-the-art numerical MISDP solvers at an affordable computation time. Numerical simulations in the context of DOA estimation demonstrate the improved error performance of our proposed method in comparison to several popular DOA estimation methods.

Freie Schlagworte: Maximum a posteriori estimation, Direction-of-arrival estimation, Dictionaries, Estimation, Signal processing, Numerical simulation, Time measurement, DOA estimation, multiple measurement vectors, joint sparsity, mixed-integer semidefinite program, maximum a posteriori estimation
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Discrete Optimization
TU-Projekte: DFG|PE2080/2-1|Der Partielle Relaxa
Hinterlegungsdatum: 11 Apr 2024 12:05
Letzte Änderung: 27 Sep 2024 10:08
PPN: 514467835
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen