TU Darmstadt / ULB / TUbiblio

High-temperature superconducting screens for magnetic field-error cancellation in accelerator magnets

Bortot, L. ; Mentink, M. ; Petrone, C. ; Van Nugteren, J. ; Deferne, G. ; Koettig, T. ; Kirby, G. ; Pentella, M. ; Perez, J. C. ; Pincot, F. O. ; De Rijk, G. ; Russenschuck, S. ; Verweij, A. P. ; Schöps, S. (2021)
High-temperature superconducting screens for magnetic field-error cancellation in accelerator magnets.
In: Superconductor Science and Technology, 34 (10)
doi: 10.1088/1361-6668/ac1c13
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Accelerators magnets must have minimal magnetic field imperfections to reduce particle-beam instabilities. In the case of coils made of high-temperature superconducting (HTS) tapes, the magnetization due to persistent currents adds an undesired field contribution, potentially degrading the magnetic field quality. In this paper we study the use of superconducting screens based on HTS tapes for reducing the magnetic field imperfections in accelerator magnets. The screens exploit the magnetization by persistent currents to cancel out the magnetic field error. The screens are aligned with the main field component, such that only the undesired field components are compensated. The screens are self-regulating, and do not require any externally applied source of energy. Measurements in liquid nitrogen at 77 K show for dipole-field configurations a significant reduction of the magnetic field error up to a factor of four. The residual error is explained via numerical simulations accounting for the geometric defects in the HTS screens, achieving satisfactory agreement with experimental results. Simulations show that if screens are increased in width and thickness, and operated at 4.5 K, field errors may be eliminated almost entirely for the typical excitation cycles of accelerator magnets.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Bortot, L. ; Mentink, M. ; Petrone, C. ; Van Nugteren, J. ; Deferne, G. ; Koettig, T. ; Kirby, G. ; Pentella, M. ; Perez, J. C. ; Pincot, F. O. ; De Rijk, G. ; Russenschuck, S. ; Verweij, A. P. ; Schöps, S.
Art des Eintrags: Bibliographie
Titel: High-temperature superconducting screens for magnetic field-error cancellation in accelerator magnets
Sprache: Englisch
Publikationsjahr: 2021
Ort: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Superconductor Science and Technology
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 10
Kollation: 14 Seiten
DOI: 10.1088/1361-6668/ac1c13
Zugehörige Links:
Kurzbeschreibung (Abstract):

Accelerators magnets must have minimal magnetic field imperfections to reduce particle-beam instabilities. In the case of coils made of high-temperature superconducting (HTS) tapes, the magnetization due to persistent currents adds an undesired field contribution, potentially degrading the magnetic field quality. In this paper we study the use of superconducting screens based on HTS tapes for reducing the magnetic field imperfections in accelerator magnets. The screens exploit the magnetization by persistent currents to cancel out the magnetic field error. The screens are aligned with the main field component, such that only the undesired field components are compensated. The screens are self-regulating, and do not require any externally applied source of energy. Measurements in liquid nitrogen at 77 K show for dipole-field configurations a significant reduction of the magnetic field error up to a factor of four. The residual error is explained via numerical simulations accounting for the geometric defects in the HTS screens, achieving satisfactory agreement with experimental results. Simulations show that if screens are increased in width and thickness, and operated at 4.5 K, field errors may be eliminated almost entirely for the typical excitation cycles of accelerator magnets.

Freie Schlagworte: high-temperature superconductors, magnetic field quality, screening currents, persistent magnetization, superconducting magnetic screens, finite-element analysis, accelerator magnets
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Computational Electromagnetics
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 07 Mär 2024 10:28
Letzte Änderung: 07 Mär 2024 10:28
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen