TU Darmstadt / ULB / TUbiblio

Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines

Kersting, Kristian (2024)
Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines.
In: Frontiers in Big Data, 2018, 1
doi: 10.26083/tuprints-00015715
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Machine learning (ML) and artificial intelligence (AI) are becoming dominant problem-solving techniques in many areas of research and industry, not least because of the recent successes of deep learning (DL). However, the equation AI=ML=DL, as recently suggested in the news, blogs, and media, falls too short. These fields share the same fundamental hypotheses: computation is a useful way to model intelligent behavior in machines. What kind of computation and how to program it? This is not the right question. Computation neither rules out search, logical, and probabilistic techniques, nor (deep) (un)supervised and reinforcement learning methods, among others, as computational models do include all of them. They complement each other, and the next breakthrough lies not only in pushing each of them but also in combining them.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kersting, Kristian
Art des Eintrags: Zweitveröffentlichung
Titel: Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines
Sprache: Englisch
Publikationsjahr: 5 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 19 November 2018
Ort der Erstveröffentlichung: Lausanne
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Big Data
Jahrgang/Volume einer Zeitschrift: 1
Kollation: 4 Seiten
DOI: 10.26083/tuprints-00015715
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15715
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Machine learning (ML) and artificial intelligence (AI) are becoming dominant problem-solving techniques in many areas of research and industry, not least because of the recent successes of deep learning (DL). However, the equation AI=ML=DL, as recently suggested in the news, blogs, and media, falls too short. These fields share the same fundamental hypotheses: computation is a useful way to model intelligent behavior in machines. What kind of computation and how to program it? This is not the right question. Computation neither rules out search, logical, and probabilistic techniques, nor (deep) (un)supervised and reinforcement learning methods, among others, as computational models do include all of them. They complement each other, and the next breakthrough lies not only in pushing each of them but also in combining them.

Freie Schlagworte: machine learning, artificial intelligence, deep learning, computation, learning methods
ID-Nummer: Artikel-ID: 6
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-157154
Zusätzliche Informationen:

Specialty section: This article was submitted to Machine Learning and Artificial Intelligence, a section of the journal Frontiers in Big Data

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Künstliche Intelligenz und Maschinelles Lernen
Zentrale Einrichtungen
Zentrale Einrichtungen > Centre for Cognitive Science (CCS)
Hinterlegungsdatum: 05 Mär 2024 13:33
Letzte Änderung: 07 Mär 2024 09:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen