TU Darmstadt / ULB / TUbiblio

Daily Routine Recognition for Hearing Aid Personalization

Kuebert, Thomas ; Puder, Henning ; Koeppl, Heinz (2024)
Daily Routine Recognition for Hearing Aid Personalization.
In: SN Computer Science, 2021, 2 (3)
doi: 10.26083/tuprints-00023594
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

This work focuses on daily routine recognition to personalize the hearing aid (HA) configuration for each user. So far, there is only one public data set containing the data of two acceleration sensors taken under unconstrained real-life conditions of one person. Therefore, we create a realistic and extensive data set with seven subjects and a total length of 63449 min. For the recordings, the HA streams the acceleration and audio data to a mobile phone, where the user simultaneously annotates it. This builds the grounds for our comprehensive simulations, where we train a set of classifiers in an offline and online manner to analyze the model generalization abilities across subjects for high-level activities. To achieve this, we build a feature representation, which describes the recurring daily situations and environments well. For the offline classification, the deep neural network, multi-layer perceptron (MLP), and random forest (RF) trained in a person-dependent manner show the significantly best F-measure performance of 86.6%, 87.1%, and 87.3%, respectively. We confirm that for high-level activities the person-dependent model outperforms the independent one. In our online experiments, we personalize a model that was pretrained in a person-independent manner by daily updates. Thereby, multiple incremental learners and an online RF are tested. We demonstrate that MLP and RF improve the F-measure compared to the offline baselines.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kuebert, Thomas ; Puder, Henning ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Daily Routine Recognition for Hearing Aid Personalization
Sprache: Englisch
Publikationsjahr: 5 März 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Singapore
Verlag: Springer Singapore
Titel der Zeitschrift, Zeitung oder Schriftenreihe: SN Computer Science
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 3
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00023594
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23594
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

This work focuses on daily routine recognition to personalize the hearing aid (HA) configuration for each user. So far, there is only one public data set containing the data of two acceleration sensors taken under unconstrained real-life conditions of one person. Therefore, we create a realistic and extensive data set with seven subjects and a total length of 63449 min. For the recordings, the HA streams the acceleration and audio data to a mobile phone, where the user simultaneously annotates it. This builds the grounds for our comprehensive simulations, where we train a set of classifiers in an offline and online manner to analyze the model generalization abilities across subjects for high-level activities. To achieve this, we build a feature representation, which describes the recurring daily situations and environments well. For the offline classification, the deep neural network, multi-layer perceptron (MLP), and random forest (RF) trained in a person-dependent manner show the significantly best F-measure performance of 86.6%, 87.1%, and 87.3%, respectively. We confirm that for high-level activities the person-dependent model outperforms the independent one. In our online experiments, we personalize a model that was pretrained in a person-independent manner by daily updates. Thereby, multiple incremental learners and an online RF are tested. We demonstrate that MLP and RF improve the F-measure compared to the offline baselines.

Freie Schlagworte: Machine learning, Daily routine, Activity recognition, Hearing aid, Sensor fusion
ID-Nummer: Artikel-ID: 133
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-235945
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Adaptive Lichttechnische Systeme und Visuelle Verarbeitung
Interdisziplinäre Forschungsprojekte
Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology
Hinterlegungsdatum: 05 Mär 2024 12:45
Letzte Änderung: 07 Mär 2024 10:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen