TU Darmstadt / ULB / TUbiblio

Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels

Laucirica, Gregorio ; Albesa, Alberto G. ; Toimil-Molares, María Eugenia ; Trautmann, Christina ; Marmisollé, Waldemar A. ; Azzaroni, Omar (2020)
Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels.
In: Nano Energy, 71
doi: 10.1016/j.nanoen.2020.104612
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Nanofluidic reverse electrodialysis systems based on track-etched nanochannels are promising devices for new eco-friendly ways of sustainable energy generation. In recent years, several works have been focused on the influence of parameters such as pH, ionic strength, and chemical nature of the electrolyte on the device performance. However, despite the relevance of the geometry on the channel properties, the influence of the nanochannel shape on the performance of energy conversion remains almost unexplored. In this work, we present an experimental study - complemented with Poisson-Nernst-Planck simulations - that describes how the shape of the nanochannels strongly affects the energy conversion performance of single bullet-shaped nanochannels created on PET foils by the ion-track-etching method. To test optimal parameters for energy conversion and selectivity, the performance was investigated by varying the channel effective diameter as well as the pH and the electrolyte gradient. With a maximum output power of 80 pW, this system reveals the best value reported for a bare single track-etched nanochannel. Therefore, this work experimentally demonstrates that it is possible to obtain high power output by means of a careful choice of channel geometry and etching conditions, in addition to other experimental parameters such as pH and electrolyte gradient. We believe that these results offer a promising framework to explore new design concepts in nanofluidic osmotic power generators.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Laucirica, Gregorio ; Albesa, Alberto G. ; Toimil-Molares, María Eugenia ; Trautmann, Christina ; Marmisollé, Waldemar A. ; Azzaroni, Omar
Art des Eintrags: Bibliographie
Titel: Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels
Sprache: Englisch
Publikationsjahr: Mai 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nano Energy
Jahrgang/Volume einer Zeitschrift: 71
DOI: 10.1016/j.nanoen.2020.104612
Kurzbeschreibung (Abstract):

Nanofluidic reverse electrodialysis systems based on track-etched nanochannels are promising devices for new eco-friendly ways of sustainable energy generation. In recent years, several works have been focused on the influence of parameters such as pH, ionic strength, and chemical nature of the electrolyte on the device performance. However, despite the relevance of the geometry on the channel properties, the influence of the nanochannel shape on the performance of energy conversion remains almost unexplored. In this work, we present an experimental study - complemented with Poisson-Nernst-Planck simulations - that describes how the shape of the nanochannels strongly affects the energy conversion performance of single bullet-shaped nanochannels created on PET foils by the ion-track-etching method. To test optimal parameters for energy conversion and selectivity, the performance was investigated by varying the channel effective diameter as well as the pH and the electrolyte gradient. With a maximum output power of 80 pW, this system reveals the best value reported for a bare single track-etched nanochannel. Therefore, this work experimentally demonstrates that it is possible to obtain high power output by means of a careful choice of channel geometry and etching conditions, in addition to other experimental parameters such as pH and electrolyte gradient. We believe that these results offer a promising framework to explore new design concepts in nanofluidic osmotic power generators.

Freie Schlagworte: concentration polarization, nanofluidics, ion transport, osmotic power generation, blue energy
Zusätzliche Informationen:

Artikel-ID: 104612

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 29 Feb 2024 08:17
Letzte Änderung: 29 Feb 2024 08:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen