TU Darmstadt / ULB / TUbiblio

Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization

Kueppers, Martin ; Perau, Christian ; Franken, Marco ; Heger, Hans Joerg ; Huber, Matthias ; Metzger, Michael ; Niessen, Stefan (2020)
Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization.
In: Energies, 13 (16)
doi: 10.3390/en13164076
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The decarbonization of energy systems has led to a fundamental change in their topology since generation is shifted to locations with favorable renewable conditions. In planning, this change is reflected by applying optimization models to regions within a country to optimize the distribution of generation units and to evaluate the resulting impact on the grid topology. This paper proposes a globally applicable framework to find a suitable regionalization for energy system models with a data-driven approach. Based on a global, spatially resolved database of demand, generation, and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalization approach is applied by modeling the resulting regions in an optimization model including a synthesized grid. In an exemplary case study, South Africa’s energy system is examined. The results show that the data-driven regionalization is beneficial compared to the common approach of using political regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstrate that the integration of renewable energy sources fundamentally changes the role of regions within South Africa’s energy system. Thereby, the electricity exchange between regions is also impacted, leading to a different grid topology. Using clustered regions improves the understanding and analysis of regional transformations in the decarbonization process.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Kueppers, Martin ; Perau, Christian ; Franken, Marco ; Heger, Hans Joerg ; Huber, Matthias ; Metzger, Michael ; Niessen, Stefan
Art des Eintrags: Bibliographie
Titel: Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization
Sprache: Englisch
Publikationsjahr: 6 August 2020
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 16
Kollation: 15 Seiten
DOI: 10.3390/en13164076
Zugehörige Links:
Kurzbeschreibung (Abstract):

The decarbonization of energy systems has led to a fundamental change in their topology since generation is shifted to locations with favorable renewable conditions. In planning, this change is reflected by applying optimization models to regions within a country to optimize the distribution of generation units and to evaluate the resulting impact on the grid topology. This paper proposes a globally applicable framework to find a suitable regionalization for energy system models with a data-driven approach. Based on a global, spatially resolved database of demand, generation, and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalization approach is applied by modeling the resulting regions in an optimization model including a synthesized grid. In an exemplary case study, South Africa’s energy system is examined. The results show that the data-driven regionalization is beneficial compared to the common approach of using political regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstrate that the integration of renewable energy sources fundamentally changes the role of regions within South Africa’s energy system. Thereby, the electricity exchange between regions is also impacted, leading to a different grid topology. Using clustered regions improves the understanding and analysis of regional transformations in the decarbonization process.

Freie Schlagworte: spatial clustering, energy system model, optimization, GIS, South Africa, energy transition
Zusätzliche Informationen:

Erstveröffentlichung; This article belongs to the Section F: Electrical Engineering

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Technik und Ökonomie Multimodaler Energiesysteme (MMES)
Hinterlegungsdatum: 28 Feb 2024 07:29
Letzte Änderung: 28 Feb 2024 07:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen