TU Darmstadt / ULB / TUbiblio

Ion tracks in ultrathin polymer films: the role of the substrate

Thomaz, Raquel ; Lima, Nathan W. ; Teixeira, Diego ; Gutierres, Leandro I. ; Alencar, Igor ; Trautmann, Christina ; Grande, Pedro L. ; Papaléo, Ricardo M. (2021)
Ion tracks in ultrathin polymer films: the role of the substrate.
In: Current Applied Physics, 32
doi: 10.1016/j.cap.2021.10.004
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Surface damage produced by single MeV-GeV heavy ions impacting ultrathin polymer films has been shown to be weaker than those observed under bulk (thick film) conditions. The decrease in damage efficiency has been attributed to the suppression of long-range effects arising from excited atoms lying deeply in the solid. This raises the possibility that the substrate of the films itself is relevant to the radiation effects seen at the top surface. Here, the role of the substrate on cratering induced by individual 1.1 GeV Au ions in ultrathin poly(methyl methacrylate) (PMMA) layers is investigated. Materials of different thermal and electrical properties (Si, SiO2, and Au) are used as substrates to deposit PMMA thin films of various thicknesses from ∼1 to ∼300 nm. We show that in films thinner than ∼40 nm craters are modulated by the underlying substrate to a degree that depends on the transport properties of the medium. Crater size in ultrathin films deposited on the insulating SiO2 is larger than in similar films deposited on the conducting Au layer. This is consistent with an inefficient coupling of the electronic excitation energy to the atomic cores in metals. On the other hand, the damage on films deposited on SiO2 is not very different from the Si substrate with a native oxide layer, suggesting, in addition, poor energy transmission across the film/substrate interface. The experimental observations are also compared to calculations from an analytical model based on energy addition and transport from the excited ion track, which describe only partially the results.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Thomaz, Raquel ; Lima, Nathan W. ; Teixeira, Diego ; Gutierres, Leandro I. ; Alencar, Igor ; Trautmann, Christina ; Grande, Pedro L. ; Papaléo, Ricardo M.
Art des Eintrags: Bibliographie
Titel: Ion tracks in ultrathin polymer films: the role of the substrate
Sprache: Englisch
Publikationsjahr: Dezember 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Current Applied Physics
Jahrgang/Volume einer Zeitschrift: 32
DOI: 10.1016/j.cap.2021.10.004
Kurzbeschreibung (Abstract):

Surface damage produced by single MeV-GeV heavy ions impacting ultrathin polymer films has been shown to be weaker than those observed under bulk (thick film) conditions. The decrease in damage efficiency has been attributed to the suppression of long-range effects arising from excited atoms lying deeply in the solid. This raises the possibility that the substrate of the films itself is relevant to the radiation effects seen at the top surface. Here, the role of the substrate on cratering induced by individual 1.1 GeV Au ions in ultrathin poly(methyl methacrylate) (PMMA) layers is investigated. Materials of different thermal and electrical properties (Si, SiO2, and Au) are used as substrates to deposit PMMA thin films of various thicknesses from ∼1 to ∼300 nm. We show that in films thinner than ∼40 nm craters are modulated by the underlying substrate to a degree that depends on the transport properties of the medium. Crater size in ultrathin films deposited on the insulating SiO2 is larger than in similar films deposited on the conducting Au layer. This is consistent with an inefficient coupling of the electronic excitation energy to the atomic cores in metals. On the other hand, the damage on films deposited on SiO2 is not very different from the Si substrate with a native oxide layer, suggesting, in addition, poor energy transmission across the film/substrate interface. The experimental observations are also compared to calculations from an analytical model based on energy addition and transport from the excited ion track, which describe only partially the results.

Freie Schlagworte: ion tracks, low dimensional materials, polymer thin films, radiation effects
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 27 Feb 2024 06:42
Letzte Änderung: 27 Feb 2024 09:14
PPN: 515829277
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen