TU Darmstadt / ULB / TUbiblio

A Container-driven Approach for Resource Provisioning in Edge-Fog Cloud

Fard, Hamid Mohammadi ; Prodan, Radu ; Wolf, Felix (2019)
A Container-driven Approach for Resource Provisioning in Edge-Fog Cloud.
5th International Symposium on Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2019). Munich, Germany (10.09.2019)
doi: 10.1007/978-3-030-58628-7_5
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

With the emerging Internet of Things (IoT), distributed systems enter a new era. While pervasive and ubiquitous computing already became reality with the use of the cloud, IoT networks present new challenges because the ever growing number of IoT devices increases the latency of transferring data to central cloud data centers. Edge and fog computing represent practical solutions to counter the huge communication needs between IoT devices and the cloud. Considering the complexity and heterogeneity of edge and fog computing, however, resource provisioning remains the Achilles heel of efficiency for IoT applications. According to the importance of operating-system virtualization (so-called containerization), we propose an application-aware container scheduler that helps to orchestrate dynamic heterogeneous resources of edge and fog architectures. By considering available computational capacity, the proximity of computational resources to data producers and consumers, and the dynamic system status, our proposed scheduling mechanism selects the most adequate host to achieve the minimum response time for a given IoT service. We show how a hybrid use of containers and serverless microservices improves the performance of running IoT applications in fog-edge clouds and lowers usage fees. Moreover, our approach outperforms the scheduling mechanisms of Docker Swarm.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Fard, Hamid Mohammadi ; Prodan, Radu ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: A Container-driven Approach for Resource Provisioning in Edge-Fog Cloud
Sprache: Englisch
Publikationsjahr: 11 September 2019
Verlag: Springer
Buchtitel: ALGOCLOUD 2019: Algorithmic Aspects of Cloud Computing
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 12041
Veranstaltungstitel: 5th International Symposium on Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2019)
Veranstaltungsort: Munich, Germany
Veranstaltungsdatum: 10.09.2019
DOI: 10.1007/978-3-030-58628-7_5
Kurzbeschreibung (Abstract):

With the emerging Internet of Things (IoT), distributed systems enter a new era. While pervasive and ubiquitous computing already became reality with the use of the cloud, IoT networks present new challenges because the ever growing number of IoT devices increases the latency of transferring data to central cloud data centers. Edge and fog computing represent practical solutions to counter the huge communication needs between IoT devices and the cloud. Considering the complexity and heterogeneity of edge and fog computing, however, resource provisioning remains the Achilles heel of efficiency for IoT applications. According to the importance of operating-system virtualization (so-called containerization), we propose an application-aware container scheduler that helps to orchestrate dynamic heterogeneous resources of edge and fog architectures. By considering available computational capacity, the proximity of computational resources to data producers and consumers, and the dynamic system status, our proposed scheduling mechanism selects the most adequate host to achieve the minimum response time for a given IoT service. We show how a hybrid use of containers and serverless microservices improves the performance of running IoT applications in fog-edge clouds and lowers usage fees. Moreover, our approach outperforms the scheduling mechanisms of Docker Swarm.

Freie Schlagworte: EU| GA 785907
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 04 Apr 2024 11:30
Letzte Änderung: 13 Jun 2024 15:12
PPN: 51912653X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen