TU Darmstadt / ULB / TUbiblio

Accelerating Data-Dependence Profiling with Static Hints

Norouzi, Mohammad ; Ilias, Qamar ; Jannesari, Ali ; Wolf, Felix (2019)
Accelerating Data-Dependence Profiling with Static Hints.
25th International Conference on Parallel and Distributed Computing (Euro-Par 2019). Göttingen, Germany (26.-30.08.2019)
doi: 10.1007/978-3-030-29400-7_2
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Data-dependence profiling is a program-analysis technique to discover potential parallelism in sequential programs. Contrary to purely static dependence analysis, profiling has the advantage that it captures only those dependences that actually occur during execution. Lacking critical runtime information such as the value of pointers and array indices, purely static analysis may overestimate the amount of dependences. On the downside, dependence profiling significantly slows down the program, not seldom prolonging execution by a factor of 100. In this paper, we propose a hybrid approach that substantially reduces this overhead. First, we statically identify persistent data dependences that will appear in any execution. We then exclude the affected source-code locations from instrumentation, allowing the profiler to skip them at runtime and avoiding the associated overhead. At the end, we merge static and dynamic dependences. We evaluated our approach with 38 benchmarks from two benchmark suites and obtained a median reduction of the profiling time by 62% across all the benchmarks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Norouzi, Mohammad ; Ilias, Qamar ; Jannesari, Ali ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Accelerating Data-Dependence Profiling with Static Hints
Sprache: Englisch
Publikationsjahr: 13 August 2019
Verlag: Springer
Buchtitel: Euro-Par 2019: Parellel Processing
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 11725
Veranstaltungstitel: 25th International Conference on Parallel and Distributed Computing (Euro-Par 2019)
Veranstaltungsort: Göttingen, Germany
Veranstaltungsdatum: 26.-30.08.2019
DOI: 10.1007/978-3-030-29400-7_2
Kurzbeschreibung (Abstract):

Data-dependence profiling is a program-analysis technique to discover potential parallelism in sequential programs. Contrary to purely static dependence analysis, profiling has the advantage that it captures only those dependences that actually occur during execution. Lacking critical runtime information such as the value of pointers and array indices, purely static analysis may overestimate the amount of dependences. On the downside, dependence profiling significantly slows down the program, not seldom prolonging execution by a factor of 100. In this paper, we propose a hybrid approach that substantially reduces this overhead. First, we statically identify persistent data dependences that will appear in any execution. We then exclude the affected source-code locations from instrumentation, allowing the profiler to skip them at runtime and avoiding the associated overhead. At the end, we merge static and dynamic dependences. We evaluated our approach with 38 benchmarks from two benchmark suites and obtained a median reduction of the profiling time by 62% across all the benchmarks.

Freie Schlagworte: LOEWE|SF4.0, DFG|320898076, DoE|DE-SC0015524, LOEWE, DFG, DoE
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 04 Apr 2024 11:24
Letzte Änderung: 18 Apr 2024 13:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen