TU Darmstadt / ULB / TUbiblio

Switchable ion current saturation regimes enabled via heterostructured nanofluidic devices based on metal–organic frameworks

Laucirica, Gregorio ; Allegretto, Juan A. ; Wagner, Michael F. ; Toimil‐Molares, Maria Eugenia ; Trautmann, Christina ; Rafti, Matías ; Marmisollé, Waldemar ; Azzaroni, Omar (2022)
Switchable ion current saturation regimes enabled via heterostructured nanofluidic devices based on metal–organic frameworks.
In: Advanced Materials, 34 (51)
doi: 10.1002/adma.202207339
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Laucirica, Gregorio ; Allegretto, Juan A. ; Wagner, Michael F. ; Toimil‐Molares, Maria Eugenia ; Trautmann, Christina ; Rafti, Matías ; Marmisollé, Waldemar ; Azzaroni, Omar
Art des Eintrags: Bibliographie
Titel: Switchable ion current saturation regimes enabled via heterostructured nanofluidic devices based on metal–organic frameworks
Sprache: Englisch
Publikationsjahr: 9 Dezember 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 51
DOI: 10.1002/adma.202207339
Kurzbeschreibung (Abstract):

The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.

Freie Schlagworte: ion current, ion-track-etching, metal-organic frameworks, nanofluidic devices, porosity
Zusätzliche Informationen:

Artikel-ID: 2207339

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 26 Feb 2024 07:47
Letzte Änderung: 26 Feb 2024 13:21
PPN: 515816485
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen